5. Key words#

5.1. Laws CZM_xxx_REG#

Cohesive behavior laws CZM_EXP_REG and CZM_LIN_REG are used in STAT_NON_LINE and DYNA_NON_LINE. They can be used on 2D or 3D joint elements with the models: PLAN_JOINT, AXIS_JOINT or 3D_ JOINT.

Four parameters are to be entered in DEFI_MATERIAU under the RUPT_FRAG keywords:

GC: critical surface energy density (Pressure x Length)

SIGM_C: critical stress (Pressure)

PENA_ADHERENCE: penalization of adherence.

PENA_CONTACT: penalization of contact (optional equal to 1 by default).

The RUPT_FRAG_FO keyword makes it possible to make the parameters depend on the temperature (see documentation from DEFI_MATERIAU [U4.43.01]).

Orders

STAT_NON_LINE

COMPORTEMENT

RELATION

CZM_EXP_REG

CZM_LIN_REG

DYNA_NON_LINE

COMPORTEMENT

RELATION

CZM_EXP_REG

CZM_LIN_REG

AFFE_MODELE

MODELISATION

PLAN_JOINT

AXIS_JOINT

3D_ JOINT

DEFI_MATERIAU

RUPT_FRAG

GC

SIGM_C

PENA_ADHERENCE

PENA_CONTACT

RUPT_FRAG_FO

GC

SIGM_C

PENA_ADHERENCE

PENA_CONTACT

These cohesive laws of behavior are tested in statics: see test case SSNP118 (doc [V6.03.118]), SSNP133 (doc [V6.03.133]), SSNA115 (doc [V6.01.115]) and SSNV199 (doc [V6.03.199]) and in dynamics: test case (doc []) and in dynamics: test case SDNS105 (doc []). V5.06.105

5.2. Laws CZM_xxx_MIX#

The cohesive laws of behavior CZM_ELAS_MIX, CZM_TAC_MIX, CZM_OUV_MIX, CZM_EXP_MIX,,,, CZM_TRA_MIX,, CZM_FAT_MIX, and CZM_LAB_MIX are used in STAT_NON_LINE (and DYNA_NON_LINE for the first three). They can be used with all INTERFACE models in 2D and 3D.

  • For law CZM_ELAS_MIX, six parameters must be entered in DEFI_MATERIAUsous the keyword CZM_ELAS:

      • RIGI_NOR_TRAC: stiffness module \({k}_{\mathit{nt}}\) in the normal direction under traction (\(J/{m}^{4}\))

        • RIGI_NOR_COMP: stiffness module \({k}_{\mathit{nc}}\) in the normal compression direction (\(J/{m}^{4}\))

RIGI_TAN: stiffness module \({k}_{t}\) in the tangent direction (\(J/{m}^{4}\))

ADHE_NOR: grip type in the normal direction (“PARFAITE”, “”, “UNILATER”, “ELAS”)

ADHE_TAN: type of grip in the tangent direction (“PARFAITE”, “ELAS”)

PENA_LAGR_ABSO: penalty coefficient \(r\) (\(J/{m}^{4}\))

Optionally, the stiffness in the normal direction can be entered by RIGI_NOR if it is identical in tension and in compression (\({k}_{\mathit{nt}}={k}_{\mathit{nc}}\)).

  • For laws CZM_TAC_MIX, CZM_OUV_MIX, CZM_EXP_MIX and CZM_FAT_MIX, four parameters must be entered in DEFI_MATERIAU under the keyword RUPT_FRAG:

GC: critical surface energy density (Pressure x Length)

SIGM_C: critical stress (Pressure)

PENA_LAGR: penalization of the Lagrangian (optional, 100 by default).

RIGI_GLIS: sliding stiffness, only for CZM_OUV_MIX and CZM_FAT_MIX (optional, 10 by default).

CINEMATIQUE: Determine the opening methods authorized by the CZM_TAC_MIX law. It can be a contact condition (“UNILATERAL”), a slide in the tangential plane (“GLIS_2D”), or a slide in a single direction (“GLIS_1D”). (optional, “UNILATERAL” by default)

  • For law CZM_TRA_MIX six parameters are to be entered in DEFI_MATERIAU under the keyword RUPT_DUCT:

GC: critical surface energy density (Pressure x Length)

SIGM_C: critical stress (Pressure)

COEF_EXTR: trapezoid shape coefficient (dimensionless)

COEF_PLAS: trapezoid shape coefficient (dimensionless)

PENA_LAGR: penalization of the Lagrangian (optional, 100 by default).

RIGI_GLIS: sliding stiffness, only for CZM_OUV_MIX and CZM_FAT_MIX (optional, 10 by default).

  • For law CZM_LAB_MIX six parameters are to be entered in DEFI_MATERIAU under the keyword RUPT_DUCT:

SIGM_C: Maximum stress bearable by the steel-concrete interface.

GLIS_C: Sliding for which the constraint at the interface is maximum.

ALPHA: Shape parameter of the steel-concrete adhesion law for low slip.

BETA: Shape parameter of the steel-concrete adhesion law for a large slip.

PENA_LAGR: Penalization of the Lagrangian (optional, 100 by default).

CINEMATIQUE: Determine the sliding modes allowed by the interface law. It can be a contact condition (“UNILATERAL”), a slide in the tangential plane (“GLIS_2D”), or a slide in a single direction (“GLIS_1D”). (optional, “UNILATERAL” by default)

Orders

STAT_NON_LINE

COMPORTEMENT

RELATION

CZM_ELAS_MIX

CZM_TAC_MIX

CZM_OUV_MIX CZM_EXP_MIX CZM_FAT_MIX CZM_TRA_MIX

AFFE_MODELE

MODELISATION

PLAN_INTERFACE

PLAN_INTERFACE_S

AXIS_INTERFACE

AXIS_INTERFACE_S

3D_ INTERFACE

3D_ INTERFACE_S

DEFI_MATERIAU

CZM_ELAS

RIGI_NOR

RIGI_TAN

ADHE_NOR

ADHE_TAN

PENA_LAGR_ABSO

DEFI_MATERIAU

RUPT_FRAG

GC

SIGM_C

PENA_LAGR

RIGI_GLIS

CINEMATIQUE

RUPT_DUCT

GC

SIGM_C

COEF_EXTR

COEF_PLAS

PENA_LAGR

RIGI_GLIS

CZM_LAB_MIX

SIGM_C

GLIS_C

ALPHA

BETA

PENA_LAGR

CINEMATIQUE

These cohesive laws of behavior are tested statically: see for example test cases SSNP118 (doc [V6.03.118]), SSNP139 (doc [V6.03.139]), SSNA115 (doc [V6.01.115]), SSNV199 (doc [V6.03.199]), SSNP151 (doc []), (doc []), (doc [)], (doc [V6.03.151 SSNA120 V6.01.120].

These cohesive laws of behavior are tested statically: see for example test cases SSNP118 (doc [V6.03.118]), SSNP139 (doc [V6.03.139]), SSNA115 (doc [V6.01.115]), SSNV199 (doc [V6.03.199]), SSNP151 (doc []), (doc []), (doc [)], (doc [V6.03.151 SSNA120 V6.01.120].