\[\newcommand{\vector}[1]{\underline{#1}} \newcommand{\vectorZero}{\vector{0}} \newcommand{\tensTwo}[1]{\boldsymbol{#1}} \newcommand{\tensTwoZero}{\tensTwo{0}} \newcommand{\tensTwoUnit}{\tensTwo{I}} \newcommand{\tensFour}[1]{\mathbb{#1}} \newcommand{\inverse}[1]{{#1}^{-1}} \newcommand{\transpose}[1]{{#1}^{T}} \newcommand{\inverseTranspose}[1]{ {#1}^{-T}} \newcommand{\vectorCmpCO}[2]{#1_{\left(#2\right)}} \newcommand{\vectorCmpCT}[2]{#1^{\left(#2\right)}} \newcommand{\tensTwoCmpCO}[3]{#1_{\left(#2 #3\right)}} \newcommand{\tensTwoCmpCT}[3]{#1^{\left(#2 #3\right)}} \newcommand{\tensTwoInva}[2]{I^{#1}_{#2}} \newcommand{\tensTwoDevia}[1]{\boldsymbol{\tilde{#1}}} \newcommand{\tensFourCmpCO}[5]{#1_{\left(#2 #3 #4 #5\right)}} \newcommand{\tensFourCmpCT}[5]{#1^{\left(#2 #3 #4 #5\right)}} \newcommand{\domain}{\Omega} \newcommand{\domainRefe}{\domain^{0}} \newcommand{\domainCurr}{\domain^{t}} \newcommand{\bound}{\partial\domain} \newcommand{\boundRefe}{\bound^{0}} \newcommand{\boundCurr}{\bound^{t}} \newcommand{\boundN}{\bound_{\textrm{N}}} \newcommand{\boundNRefe}{\boundN^{0}} \newcommand{\boundNCurr}{\boundN^{t}} \newcommand{\boundD}{\bound_{\textrm{D}}} \newcommand{\boundDRefe}{\boundD^{0}} \newcommand{\boundDCurr}{\boundD^{t}} \newcommand{\normal}{\vector{n}} \newcommand{\normalRefe}{\normal^{0}} \newcommand{\normalCurr}{\normal^{t}} \newcommand{\posi}{\vector{x}} \newcommand{\posiRefe}{\posi^{0}} \newcommand{\posiCurr}{\posi^{t}} \newcommand{\disp}{\vector{u}} \newcommand{\dispVirt}{\delta\vector{v}} \newcommand{\funcTransfor}{\vector{\varphi}^{t}} \newcommand{\gradTransfor}{\tensTwo{F}} \newcommand{\jacobTransfor}{J} \newcommand{\posiIncr}{\vector{dx}} \newcommand{\posiIncrRefe}{\posiIncr^{0}} \newcommand{\posiIncrCurr}{\posiIncr^{t}} \newcommand{\strainCmp}{\varepsilon} \newcommand{\strain}{\tensTwo{\strainCmp}} \newcommand{\EGLCmp}{E} \newcommand{\ECGDroiteCmp}{C} \newcommand{\ECGGaucheCmp}{B} \newcommand{\ELOGCmp}{{E}_{ln}} \newcommand{\EGL}{\tensTwo{\EGLCmp}} \newcommand{\ECGDroite}{\tensTwo{\ECGDroiteCmp}} \newcommand{\ECGGauche}{\tensTwo{\ECGGaucheCmp}} \newcommand{\ELOG}{\tensTwo{\ELOGCmp}} \newcommand{\EDilCmp}{C^{\star}} \newcommand{\EDil}{\tensTwo{\EDilCmp}} \newcommand{\divTensTwo}[1]{\vector{\nabla} {\cdot} #1 } \newcommand{\divVector}[1]{\vector{\nabla} {\cdot} #1 } \newcommand{\gradScal}[1]{\vector{\nabla} \times #1 } \newcommand{\gradVector}[1]{\vector{\nabla} \times #1 } \DeclareMathOperator{\rand}{rand} \DeclareMathOperator{\round}{round} \DeclareMathOperator{\trace}{trace} \newcommand{\metric} {\tensTwo{g}} \newcommand{\vectorBaseCV}[1]{\vector{g_{#1}}} \newcommand{\vectorBaseCT}[1]{\vector{g^{#1}}} \newcommand{\metricRefe} {\metric^{t}} \newcommand{\metricCurr} {\metric^{0}} \newcommand{\discVect}[1]{\lbrace #1 \rbrace} \newcommand{\discVectLigne}[1]{\langle #1 \rangle} \newcommand{\discVectZero}{\discVect{0}} \newcommand{\discVectCmp}[2]{\lbrace #1 \rbrace_{(#2)}} \newcommand{\discVectLigneCmp}[2]{\langle #1 \rangle_{(#2)}} \newcommand{\discMatr}[1]{\left[ #1 \right]} \newcommand{\discMatrZero}{\discMatr{0}} \newcommand{\discMatrCmp}[3]{\left[ #1 \right]_{(#2#3)}} \newcommand{\onQuadPoint}[2]{{#1}_{#2}} \newcommand{\onNode}[2]{{#1}^{#2}} \newcommand{\quadOrder}{k_{Q}} \newcommand{\nbQuadPoint}{n_Q} \newcommand{\quadWeight}[1]{\omega_{#1}} \newcommand{\quadPointIndex}{i_{\textrm{pg}}} \newcommand{\nodeIndex}{i_{\textrm{no}}} \newcommand{\pres}{p} \newcommand{\presRefe}{\pres^{0}} \newcommand{\presCurr}{\pres^{t}} \newcommand{\stressCmp}{\sigma} \newcommand{\stress}{\tensTwo{\stressCmp}} \newcommand{\stressPKTwoCmp}{S} \newcommand{\stressPKTwo}{\tensTwo{\stressPKTwoCmp}} \newcommand{\work}[1]{W^{#1}} \newcommand{\enerInterne}{\Psi_i} \newcommand{\yieldStress}{\sigmaCmp_{Y}} \newcommand{\youngModulus}{E} \newcommand{\youngModulusCplx}{E^{\star}} \newcommand{\poissonCoef}{\nu} \newcommand{\poissonCoefCplx}{\nu^{\star}} \newcommand{\shearModulus}{G} \newcommand{\bulkModulus}{K} \newcommand{\modulusTangent}{\tensFour{K}} \newcommand{\anglDila}{\psi} \newcommand{\anglFric}{\varphi} \newcommand{\cohesion}{c} \newcommand{\presCapi}{\pres_{c}} \newcommand{\presEau}{\pres_{w}} \newcommand{\presAir}{\pres_{a}} \newcommand{\shapeFunc}{\Phi} \newcommand{\shapeDFunc}{B} \newcommand{\measLine}{\, \mathrm{d} l} \newcommand{\measDomain}{\, \mathrm{d} \domain} \newcommand{\measBound}{\, \mathrm{d} \Gamma} \newcommand{\normEucl}[1]{\Vert{#1} \Vert } \newcommand{\derivee}[2]{#1_{, #2}} \newcommand{\soundSpeed}{c} \newcommand{\soundSpeedComp}{c_{P}} \newcommand{\soundSpeedCisa}{c_{S}} \newcommand{\posiTang}{\posi_{\tau}} \newcommand{\posiNorm}{{x}_{n}} \newcommand{\dispTang}{\disp_{\tau}} \newcommand{\dispNorm}{{u}_{n}} \newcommand{\basisVector}[1]{\vector{e}_{#1}} \newcommand{\sigmVector}{\vector{t}} \newcommand{\sigmVectorTang}{\sigmVector_{\tau}} \newcommand{\sigmVectorNorm}{t_{n}} \newcommand{\lameLambda}{\lambda} \newcommand{\lameMu}{\mu}\]

2. Viscous formulation#

2.1. Piola-Kirchhoff stress tensor 2#

The viscosity is modelled by introducing a Prony series on the isochoric part of the second Piola-Kirchhoff tensor \({\stressPKTwo}^{\mathrm{iso}}\). The Piola-Kirchhoff stress tensor for the visco-elastic part is written as the finite sum of \(N\) tensors \(\tensTwo{H}_{i}\)

(2.1)#\[ {\ stress PKTwo} ^\ mathrm {visc} = \ sum_ {i=1} ^N\ TensTwo {H} _ {i}\]

With,

(2.2)#\[\begin{split} \ TensTwo {H} _ {i} |_ {t+\ Delta t} = \ exp\ left (-\ frac {dt} {\ tau_ {i}}\ right)\ left. \ tensTwo {H} _ {i}\ right\ green_ {t} + g_i\ tau_ {i}\ left (1-\ exp\ left (-\ frac {dt} {\ tau_ {i}}\ right)\ right)\ right)\ frac {\ left ({\ left ({\ stress PKTwo}} ^\\ stress} ^\ mathrm {iso}\ left ({\ stress}} ^\ mathrm {iso}\ green_ {t+\ Delta t} - {\ stress PKTwo} ^\ mathrm {iso}\ green_ {t}\ right)} {dt}\end{split}\]

The Prony series depends on two lists of parameters \({g_i}\) and \({\tau_i}\), which respectively present the long-term shear relaxation module and the relaxation time correspondent.

2.2. Lagrangian elasticity tensor#

The elastic stiffness tensor (« tangent » matrix for Newton’s problem) is given by deriving the stress tensor:

(2.3)#\[ \ ModulusTangent = \ sum_ {i=1} ^N\ frac {\ partial\ TensTwo {H} _ {i}} {\ partial\ ECGDroite}\]