.. include:: ../../../../../_cache/math_styles.rst Viscous formulation ===================== Piola-Kirchhoff stress tensor 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The viscosity is modelled by introducing a Prony series on the isochoric part of the second Piola-Kirchhoff tensor :math:`{\stressPKTwo}^{\mathrm{iso}}`. The Piola-Kirchhoff stress tensor for the visco-elastic part is written as the finite sum of :math:`N` tensors :math:`\tensTwo{H}_{i}` .. math:: :label: eq-34 {\ stress PKTwo} ^\ mathrm {visc} = \ sum_ {i=1} ^N\ TensTwo {H} _ {i} With, .. math:: :label: eq-35 \ TensTwo {H} _ {i} |_ {t+\ Delta t} = \ exp\ left (-\ frac {dt} {\ tau_ {i}}\ right)\ left. \ tensTwo {H} _ {i}\ right\ green_ {t} + g_i\ tau_ {i}\ left (1-\ exp\ left (-\ frac {dt} {\ tau_ {i}}\ right)\ right)\ right)\ frac {\ left ({\ left ({\ stress PKTwo}} ^\\ stress} ^\ mathrm {iso}\ left ({\ stress}} ^\ mathrm {iso}\ green_ {t+\ Delta t} - {\ stress PKTwo} ^\ mathrm {iso}\ green_ {t}\ right)} {dt} The Prony series depends on two lists of parameters :math:`{g_i}` and :math:`{\tau_i}`, which respectively present the long-term shear relaxation module and the relaxation time correspondent. Lagrangian elasticity tensor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The elastic stiffness tensor ("tangent" matrix for Newton's problem) is given by deriving the stress tensor: .. math:: :label: eq-36 \ ModulusTangent = \ sum_ {i=1} ^N\ frac {\ partial\ TensTwo {H} _ {i}} {\ partial\ ECGDroite}