3.1.1. The case of hyper-elastic stresses
We will detail the analytical expression of the Piola-Kirchhoff constraints for the hyper-elastic potential of Signorin (\(p=2\) and \(q=1\)) in the incompressible case. We therefore have the Piola-Kirchhoff stress tensor 2, representing the stresses measured in the initial configuration, which is written as:
(3.1)\[ \ stress PKTwo
=
2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}} {\ partial\ partial\ partial\ ECGDroite}}
+
2\ frac {\ partial {\ Psi} ^ {\ mathrm {vol}}}} {\ partial\ partial\ partial\ ECGDroite}\]
With both potentials:
(3.2)\[ \begin{align}\begin{aligned} {\ Psi} ^ {\ mathrm {iso}}
=
{C} _ {10}\ left (\ TensTwoInVa {1} {\ EDil} - 3\ right)
+
{C} _ {01}\ left (\ TensTwoInVa {2} {\ EDil} - 3\ right)
+
{C} _ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right) ^ {2}\\ \ text {and}\\ {\ Psi} ^ {\ mathrm {vol}}
=
\ frac {\ bulkModulus} {2} {\ left (\ JacobTransfor-1\ right)} ^ {2}\end{aligned}\end{align} \]
To obtain the constraints, it is necessary to derive the potential:
(3.3)\[\begin{split} \ left\ {\ begin {array} {ll}
\ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {iso}}} {i} {j}
=
2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {1} {\ EDil}}
\ frac {\ partial\ TensTwoInVa {1} {\ EDil}} {\ partial {\ TensTwoCmpco {\ stress PKTwo} {i} {i} {j}}}}
+
2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {2} {\ EDil}}
\ frac {\ partial\ TensTwoInVa {2} {\ EDil}} {\ partial {\ TensTwoCmpco {\ stress PKTwo} {i} {j}}}}}\\
\ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {vol}}} {i} {j}
=
2\ frac {\ partial {\ Psi} ^ {\ mathrm {vol}}} {\ partial\ JacobTransfor}} {\ partial\ JacobTransfor}
\ frac {\ partial\ JacobTransfor} {\ partial {\ partial {\ tenstwOCmpco {\ stress PKTwo} {i} {j}}}}}
\ end {array}\ right.\end{split}\]
With:
(3.4)\[\begin{split} \ left\ {\ begin {array} {ll}
\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoInva {1} {\ EDil}}
=
{C} _ {10} + 2 C_ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right)\\
\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {2} {\ EDil}}
=
{C} _ {01}
\ end {array}\ right.\end{split}\]
As well as the derivatives of the reduced invariants (cf. [bib5] _ for the derivatives of the invariants of a tensor):
(3.5)\[ \ frac {\ partial\ TensTwoInVa {1} {\ EDil}} {\ partial {\ TensTwoCmpco {\ ECGDroite} {i} {i} {j}}}}
=
\ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {1} {3}}
\ left (
{\ tensTwoCmpco {{\ tensTwoUnit}} {i} {j}}
-
\ frac {1} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {1} {\ ECGDroite} {\}
\ right)\]
(3.6)\[ \ frac {\ partial\ TensTwoInVa {2} {\ EDil}} {\ partial {\ TensTwoCmpco {\ ECGDroite} {i} {i} {j}}}}
=
\ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {2} {3}}
\ left (
\ tensTwoInva {1} {\ ECGDroite}\ tensTwoImpco {{\ tensTwoUnit}} {i} {j}
-
{\ tensTwoCmpco {\ ECGDroite} {i} {j}}
-
\ frac {2} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {2} {\ ECGDroite} {\}
\ right)\]
(3.7)\[ \ frac {\ partial\ JacobTransfor} {\ partial {\ partial {\ TenStwocmpco {\ ECGDroite} {i} {j}}}}}
=
\ frac {1} {2}\ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {\ frac {1} {2}} {\ TenStwocmpco {\ inverse {\ Ocmpco {\ inverse {\ ECGDroite}}} {\ inverse {\}}} {i} {j}}\]
So here is the analytical expression for volume constraints:
(3.8)\[ \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {vol}}} {i} {j}
=
\ BulkModulus\ left (\ JacobTransfor-1\ right)\ JacobTransfor {\ TenStwocmpco {\ inverse {\ ECGDroite}} {i} {i} {j}} {j}}\]
And isochoric constraints:
(3.9)\[ \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {iso}}} {i} {j}
=
2\ left\ lbrace
\ left ({C} _ {10} + 2 C_ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right)\ right)\ right)
{\ JacobTransfor} ^ {-\ frac {2} {3}}
\ left (
\ TensTwoCmpco {{\ TensTwoUnit}} {i} {j}
-
\ frac {1} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {1} {\ ECGDroite} {\}
\ right)
+
{C} _ {01}
{\ JacobTransfor} ^ {-\ frac {4} {3}}
\ left (\ TensTwoInVa {1} {\ ECGDroite}\ TensTwoInVa {1} {\ TensTwoInVa {1} {\}\ TensTwoInVa {1} {\}\ TenStwoInVa {1} {\ TensTwoInVa
-
{\ tensTwoCmpco {\ ECGDroite} {i} {j}}
-
\ frac {2} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {2} {\ ECGDroite} {\}
\ right)
\ right\ rbrace\]
3.1.3. Case of the elastic matrix of the hyperelastic law
We will detail the analytical expression of the elastic matrix for the hyper-elastic potential of Signorin (\(p=2\) and \(q=1\)) in the incompressible case. So we have:
(3.11)\[ \ ModulusTangent
=
4\ frac {\ partial^ {2} {\ Psi} ^ {\ mathrm {iso}}}}
{\ partial C\ partial C}
+
4\ frac {\ partial^2 {\ Psi} ^ {\ mathrm {vol}}} {\ partial C\ partial C}\]
It is therefore necessary to derive (twice) the potential. For the isochoric part:
\[\]
: label: eq-49a
TensFourCMPCO {modulusTangent^ {mathrm {iso}}} {i} {j} {k} {k} {l} {l}
=
frac {partial^2 {Psi} ^ {mathrm {iso}}}
{partial^2tensTwoInVa {1} {EDil}}
- frac {partial^2TensTwoInVa {1} {EDil}}
{partialTensTwoCmpco {ECGDroite} {} {i} {i} {i} {j}partialTensTwoCmpco {ECGDroite} {k} {k} {l}}
- frac {partial^2 {Psi} ^ {mathrm {iso}}}
{partial^2TensTwoInVa {2} {EDil}}
- frac {partial^2TensTwoInVa {2} {EDil}}
{partialTensTwoCmpco {ECGDroite} {} {i} {i} {i} {j}partialTensTwoCmpco {ECGDroite} {k} {k} {l}}
And for the volume part
\[\]
: label: eq-49b
TensFourCMPCO {modulusTangent^ {mathrm {vol}}} {i} {j} {k} {k} {l} {l}
=
frac {partial^2 {Psi} ^ {mathrm {vol}}}}
- frac {partial^2JacobTransfor}
{partialTensTwoCmpco {ECGDroite} {} {i} {i} {i} {j}partialTensTwoCmpco {ECGDroite} {k} {k} {l}}
Material constants are assumed to be constant. So we have:
\[\]
: label: eq-50
frac {partial^2 {Psi} ^ {mathrm {iso}}} {partial^2TensTwoinva {1} {EDil}}} = 2 C_ {20}}
text {and}
frac {partial^2 {Psi} ^ {mathrm {iso}}}} {partial^2TensTwoinva {2} {EDil}}} = 0
We can see that the coefficient \(\bulkModulus\) is indeed a penalty coefficient and that its choice has an impact on the conditioning of the matrix. Derivatives of reduced invariants:
(3.12)\[ \ frac {\ partial^2\ TensTwoInVa {1} {\ EDil}}
{\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}}
=
\ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {1} {3}}
\ left (
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {i} {i}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {l} {j}\ TensTwoInva {1} {\ ECGDroite}} -
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {i} {j}\ TenStwocmpco {{\ TensTwoUnit}} {k} {l}
-
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {k} {l}\ TenStwocmpco {{\ TensTwoUnit}} {i} {j}
+
\ frac {1} {3}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {l}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j} {j}\ TensTwoInVa {1} {\ ECGDroite}}
\ right)\]
\[\]
: label: eq-52
- frac {partial^2TensTwoInVa {2} {EDil}}
{partialTensTwoCmpco {ECGDroite} {} {i} {i} {i} {j}partialTensTwoCmpco {ECGDroite} {k} {k} {l}}
=
-frac {2} {3}left (tensTwoInva {3} {ECGDroite}right) ^ {-frac {2} {2} {3}}
TensTwoCmpco {inverse {ECGDroite}} {k} {l}
left (
tensTwoInva {1} {ECGDroite}tensTwoImpco {{tensTwoUnit}} {i} {j}
-
TensTwoCmpco {ECGDroite} {i} {j} {j}
-
frac {2} {3}TensTwoCmpco {inverse {ECGDroite}} {i} {j}TensTwoInVa {2} {ECGDroite}
right)
+
left (TensTwoInva {3} {ECGDroite}right) ^ {-frac {2} {3}}
left (
TensTwoCmpco {{TensTwoUnit}} {k} {k} {l}TensTwoCmpco {{TensTwoUnit}} {i} {j}
-
TensTwoCmpco {{TensTwoUnit}} {i} {i} {k}TensTwoCmpco {{TensTwoUnit}} {j} {l}
+
frac {2} {3}TensTwoCmpco {inverse {ECGDroite}} {k} {i}
TensTwoCmpco {inverse {ECGDroite}} {l} {j}
TensTwoInVa {2} {ECGDroite}
- frac {2} {3}TensTwoCmpco {inverse {ECGDroite}} {i} {j}
- left (
TensTwoInVa {1} {ECGDroite}
TensTwoCmpco {{TensTwoUnit}} {k} {l}
-
TensTwoCmpco {ECGDroite} {k} {l}
right)
right)
(3.13)\[ \ frac {\ partial^2\ JacobTransfor} {\ partial\ TensTwoCmpco} {\ ECGDroite} {i} {j}\ partial\ TensTwocmpco {\ ECGDroite} {\} {\} {k} {l}}
=
\ frac {1} {4}\ left (\ TensTwoInVa {3} {\ ECGDroite}\ right) ^ {\ frac {1} {4}}
\ left (
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {l}
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j}
-
2\ TenStwocmpco {\ inverse {\ ECGDroite}} {k} {i}
\ TensTwoCmpco {\ inverse {\ ECGDroite}} {l} {j}
\ right)\]