.. include:: ../../../../../_cache/math_styles.rst Analytical expressions ======================= In this paragraph, the analytical expressions of the visco-hyper-elastic law are described. We recall that when the shear relaxation modulus is equal to zero, we find the equations of the hyper-elastic law. Piola-Kirchhoff 2 stress tensor of the visco_hyper_elastic law ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The case of hyper-elastic stresses ------------------------------------- We will detail the analytical expression of the Piola-Kirchhoff constraints for the hyper-elastic potential of Signorin (:math:`p=2` and :math:`q=1`) in the incompressible case. We therefore have the Piola-Kirchhoff stress tensor 2, representing the stresses measured in the initial configuration, which is written as: .. math:: :label: eq-38 \ stress PKTwo = 2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}} {\ partial\ partial\ partial\ ECGDroite}} + 2\ frac {\ partial {\ Psi} ^ {\ mathrm {vol}}}} {\ partial\ partial\ partial\ ECGDroite} With both potentials: .. math:: :label: eq-39 {\ Psi} ^ {\ mathrm {iso}} = {C} _ {10}\ left (\ TensTwoInVa {1} {\ EDil} - 3\ right) + {C} _ {01}\ left (\ TensTwoInVa {2} {\ EDil} - 3\ right) + {C} _ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right) ^ {2} \ text {and} {\ Psi} ^ {\ mathrm {vol}} = \ frac {\ bulkModulus} {2} {\ left (\ JacobTransfor-1\ right)} ^ {2} To obtain the constraints, it is necessary to derive the potential: .. math:: :label: eq-40 \ left\ {\ begin {array} {ll} \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {iso}}} {i} {j} = 2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {1} {\ EDil}} \ frac {\ partial\ TensTwoInVa {1} {\ EDil}} {\ partial {\ TensTwoCmpco {\ stress PKTwo} {i} {i} {j}}}} + 2\ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {2} {\ EDil}} \ frac {\ partial\ TensTwoInVa {2} {\ EDil}} {\ partial {\ TensTwoCmpco {\ stress PKTwo} {i} {j}}}}}\\ \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {vol}}} {i} {j} = 2\ frac {\ partial {\ Psi} ^ {\ mathrm {vol}}} {\ partial\ JacobTransfor}} {\ partial\ JacobTransfor} \ frac {\ partial\ JacobTransfor} {\ partial {\ partial {\ tenstwOCmpco {\ stress PKTwo} {i} {j}}}}} \ end {array}\ right. With: .. math:: :label: eq-41 \ left\ {\ begin {array} {ll} \ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoInva {1} {\ EDil}} = {C} _ {10} + 2 C_ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right)\\ \ frac {\ partial {\ Psi} ^ {\ mathrm {iso}}}} {\ partial\ TensTwoinva {2} {\ EDil}} = {C} _ {01} \ end {array}\ right. As well as the derivatives of the reduced invariants (*cf.* [bib5] _ for the derivatives of the invariants of a tensor): .. math:: :label: eq-42 \ frac {\ partial\ TensTwoInVa {1} {\ EDil}} {\ partial {\ TensTwoCmpco {\ ECGDroite} {i} {i} {j}}}} = \ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {1} {3}} \ left ( {\ tensTwoCmpco {{\ tensTwoUnit}} {i} {j}} - \ frac {1} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {1} {\ ECGDroite} {\} \ right) .. math:: :label: eq-43 \ frac {\ partial\ TensTwoInVa {2} {\ EDil}} {\ partial {\ TensTwoCmpco {\ ECGDroite} {i} {i} {j}}}} = \ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {2} {3}} \ left ( \ tensTwoInva {1} {\ ECGDroite}\ tensTwoImpco {{\ tensTwoUnit}} {i} {j} - {\ tensTwoCmpco {\ ECGDroite} {i} {j}} - \ frac {2} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {2} {\ ECGDroite} {\} \ right) .. math:: :label: eq-44 \ frac {\ partial\ JacobTransfor} {\ partial {\ partial {\ TenStwocmpco {\ ECGDroite} {i} {j}}}}} = \ frac {1} {2}\ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {\ frac {1} {2}} {\ TenStwocmpco {\ inverse {\ Ocmpco {\ inverse {\ ECGDroite}}} {\ inverse {\}}} {i} {j}} So here is the analytical expression for volume constraints: .. math:: :label: eq-45 \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {vol}}} {i} {j} = \ BulkModulus\ left (\ JacobTransfor-1\ right)\ JacobTransfor {\ TenStwocmpco {\ inverse {\ ECGDroite}} {i} {i} {j}} {j}} And isochoric constraints: .. math:: :label: eq-46 \ TensTwoCmpco {\ stress PKTwo ^ {\ mathrm {iso}}} {i} {j} = 2\ left\ lbrace \ left ({C} _ {10} + 2 C_ {20}\ left (\ TensTwoInVa {1} {\ EDil} -3\ right)\ right)\ right) {\ JacobTransfor} ^ {-\ frac {2} {3}} \ left ( \ TensTwoCmpco {{\ TensTwoUnit}} {i} {j} - \ frac {1} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {1} {\ ECGDroite} {\} \ right) + {C} _ {01} {\ JacobTransfor} ^ {-\ frac {4} {3}} \ left (\ TensTwoInVa {1} {\ ECGDroite}\ TensTwoInVa {1} {\ TensTwoInVa {1} {\}\ TensTwoInVa {1} {\}\ TenStwoInVa {1} {\ TensTwoInVa - {\ tensTwoCmpco {\ ECGDroite} {i} {j}} - \ frac {2} {3} {\ TenStwOcmpco {\ inverse {\ ECGDroite}} {i} {j}}}\ TensTwoInVa {2} {\ ECGDroite} {\} \ right) \ right\ rbrace Case of visco-hyper-elastic stresses ------------------------------------------ By coupling viscosity with hyper-elasticity, the Piola-Kirchhoff 2 stress tensor becomes: .. math:: :label: eq-47 {\ stress PKTwo} = {\ stress PKTwo} ^ {\ mathrm {iso}} + {\ stress PKTwo} ^ {\ mathrm {vol}} + \ sum_ {i=1} ^N\ TensTwo {H} _ {i} Case of the elastic matrix of the hyperelastic law ----------------------------------------------------- We will detail the analytical expression of the elastic matrix for the hyper-elastic potential of Signorin (:math:`p=2` and :math:`q=1`) in the incompressible case. So we have: .. math:: :label: eq-48 \ ModulusTangent = 4\ frac {\ partial^ {2} {\ Psi} ^ {\ mathrm {iso}}}} {\ partial C\ partial C} + 4\ frac {\ partial^2 {\ Psi} ^ {\ mathrm {vol}}} {\ partial C\ partial C} It is therefore necessary to derive (twice) the potential. For the isochoric part: .. math:: : label: eq-49a \ TensFourCMPCO {\ modulusTangent^ {\ mathrm {iso}}} {i} {j} {k} {k} {l} {l} = \ frac {\ partial^2 {\ Psi} ^ {\ mathrm {iso}}} {\ partial^2\ tensTwoInVa {1} {\ EDil}} \ frac {\ partial^2\ TensTwoInVa {1} {\ EDil}} {\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}} + \ frac {\ partial^2 {\ Psi} ^ {\ mathrm {iso}}} {\ partial^2\ TensTwoInVa {2} {\ EDil}} \ frac {\ partial^2\ TensTwoInVa {2} {\ EDil}} {\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}} And for the volume part .. math:: : label: eq-49b \ TensFourCMPCO {\ modulusTangent^ {\ mathrm {vol}}} {i} {j} {k} {k} {l} {l} = \ frac {\ partial^2 {\ Psi} ^ {\ mathrm {vol}}}} {\ partial^2\ JacobTransfor} \ frac {\ partial^2\ JacobTransfor} {\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}} Material constants are assumed to be constant. So we have: .. math:: : label: eq-50 \ frac {\ partial^2 {\ Psi} ^ {\ mathrm {iso}}} {\ partial^2\ TensTwoinva {1} {\ EDil}}} = 2 C_ {20}} \ text {and} \ frac {\ partial^2 {\ Psi} ^ {\ mathrm {iso}}}} {\ partial^2\ TensTwoinva {2} {\ EDil}}} = 0 We can see that the coefficient :math:`\bulkModulus` is indeed a penalty coefficient and that its choice has an impact on the conditioning of the matrix. Derivatives of reduced invariants: .. math:: :label: eq-51 \ frac {\ partial^2\ TensTwoInVa {1} {\ EDil}} {\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}} = \ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {1} {3}} \ left ( \ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {i} {i}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {l} {j}\ TensTwoInva {1} {\ ECGDroite}} - \ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {i} {j}\ TenStwocmpco {{\ TensTwoUnit}} {k} {l} - \ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {k} {l}\ TenStwocmpco {{\ TensTwoUnit}} {i} {j} + \ frac {1} {3}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {l}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j} {j}\ TensTwoInVa {1} {\ ECGDroite}} \ right) .. math:: : label: eq-52 \ frac {\ partial^2\ TensTwoInVa {2} {\ EDil}} {\ partial\ TensTwoCmpco {\ ECGDroite} {\} {i} {i} {i} {j}\ partial\ TensTwoCmpco {\ ECGDroite} {k} {k} {l}} = -\ frac {2} {3}\ left (\ tensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {2} {2} {3}} \ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {l} \ left ( \ tensTwoInva {1} {\ ECGDroite}\ tensTwoImpco {{\ tensTwoUnit}} {i} {j} - \ TensTwoCmpco {\ ECGDroite} {i} {j} {j} - \ frac {2} {3}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j}\ TensTwoInVa {2} {\ ECGDroite} \ right) + \ left (\ TensTwoInva {3} {\ ECGDroite}\ right) ^ {-\ frac {2} {3}} \ left ( \ TensTwoCmpco {{\ TensTwoUnit}} {k} {k} {l}\ TensTwoCmpco {{\ TensTwoUnit}} {i} {j} - \ TensTwoCmpco {{\ TensTwoUnit}} {i} {i} {k}\ TensTwoCmpco {{\ TensTwoUnit}} {j} {l} + \ frac {2} {3}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {i} \ TensTwoCmpco {\ inverse {\ ECGDroite}} {l} {j} \ TensTwoInVa {2} {\ ECGDroite} - \ frac {2} {3}\ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j} \ left ( \ TensTwoInVa {1} {\ ECGDroite} \ TensTwoCmpco {{\ TensTwoUnit}} {k} {l} - \ TensTwoCmpco {\ ECGDroite} {k} {l} \ right) \ right) .. math:: :label: eq-54 \ frac {\ partial^2\ JacobTransfor} {\ partial\ TensTwoCmpco} {\ ECGDroite} {i} {j}\ partial\ TensTwocmpco {\ ECGDroite} {\} {\} {k} {l}} = \ frac {1} {4}\ left (\ TensTwoInVa {3} {\ ECGDroite}\ right) ^ {\ frac {1} {4}} \ left ( \ TensTwoCmpco {\ inverse {\ ECGDroite}} {k} {l} \ TensTwoCmpco {\ inverse {\ ECGDroite}} {i} {j} - 2\ TenStwocmpco {\ inverse {\ ECGDroite}} {k} {i} \ TensTwoCmpco {\ inverse {\ ECGDroite}} {l} {j} \ right) Case of the elastic matrix of the visco-hyper-elastic law ----------------------------- In the case of taking viscosity into account, the analytical expression for the elastic matrix becomes: .. math:: :label: eq-55 \ ModulusTangent = \ modulusTangent^ {\ mathrm {vol}} + \ modulusTangent^ {\ mathrm {iso}} + \ sum_ {i=1} ^N\ frac {\ partial\ TensTwo {H} _ {i}} {\ partial\ ECGDroite} = \ modulusTangent^ {\ mathrm {vol}} + \ modulusTangent^ {\ mathrm {iso}} \ left ( 1 + \ sum_ {i=1} ^N g_i\ tau_ {i} \ frac {\ left (1-\ exp\ left (-\ frac {dt} {\ tau_ {i}}\ right)\ right)\ right)} {dt} \ right)