2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The reference solution is generated from option POST_FATIGUE. The methodology adopted consists in defining a history of stress loading and recovering the evolution of the associated cumulative plastic deformation from a \(\mathrm{3D}\) tensile test in thermo-viscoplasticity.

The loading history \(\sigma (t)\) and \(p(t)\) is then used in a POST_FATIGUE calculation with the material parameters presented in paragraph [§1.1] to define a reference solution.

2.2. Benchmark results#

The Lemaître damage reference result is obtained for a tensile test with imposed deformation and at a constant temperature. The stress state and the cumulative plastic deformation resulting from this test are as follows:

Time \([s]\)

Constraint \(\mathrm{Sxx}(t)[\mathrm{Pa}]\)

Cumulative Plastic Deformation \(P(t)\)

50

7.15030E+06

0.000000E+00

100

1.43006E+07

0.000000E+00

150

2.14509E+07

0.000000E+00

200

2.86012E+07

0.000000E+00

250

3.57515E+07

0.000000E+00

300

4.29018E+07

0.000000E+00

350

5.00521E+07

0.000000E+00

400

5.72024E+07

0.000000E+00

450

6.43527E+07

0.000000E+00

500

7.15030E+07

0.000000E+00

550

7.86533E+07

0.000000E+00

600

8.58036E+07

0.000000E+00

650

9.29539E+07

0.000000E+00

700

1.00091E+08

9.547120E-08

750

1.06433E+08

5.747160E-06

800

1.10614E+08

2.650910E-05

850

1.12888E+08

6.060610E-05

900

1.14130E+08

1.019250E-04

950

1.14913E+08

1.464460E-04

1000

1.15508E+08

1.922890E-04

This loading history is then used with the operator POST_FATIGUE option LEMAIT_S to estimate the damage over time with the material properties defined in paragraph [§1.1]. The temperature is assumed to be constant and equal to \(20°C\). Depending on the value of the parameter \(s\) used, the following damages are found:

Damage (reference)

Time \([s]\)

Case \(s=0.8\)

Case \(s=1.003\)

50

0.00000E+00

0.00000E+00

100

0.00000E+00

0.00000E+00

150

0.00000E+00

0.00000E+00

200

0.00000E+00

0.00000E+00

250

0.00000E+00

0.00000E+00

300

0.00000E+00

0.00000E+00

350

0.00000E+00

0.00000E+00

400

0.00000E+00

0.00000E+00

450

0.00000E+00

0.00000E+00

500

0.00000E+00

0.00000E+00

550

0.00000E+00

0.00000E+00

600

0.00000E+00

0.00000E+00

650

0.00000E+00

0.00000E+00

700

0.00000E+00

0.00000E+00

750

5.43732E-03

3.19264E-02

800

2.75450E-02

1.90334E-01

850

6.75939E-02

1.00000E+00

900

1.21543E-01

1.00000E+00

950

1.87318E-01

1.00000E+00

1000

2.66202E-01

1.00000E+00

2.3. Uncertainty about the solution#

Digitally generated solution.

2.4. Bibliographical references#

  1. A.M. DONORE: Estimation of lifespan in fatigue with large numbers of cycles and in oligocyclic fatigue. Note [R7.04.01] Index B.