1. Reference problem#

The damage \(D(t)\) is calculated from the data of the stress tensor \(\sigma (t)\) and the cumulative plastic deformation \(p(t)\) resulting from a thermomechanical calculation. The damage kinetics is given by:

\(\dot{D}=\frac{1}{{(1-D)}^{\mathrm{2s}}}{\left[\frac{1}{\mathrm{3ES}}(1+\nu ){\sigma }_{\mathrm{eq}}^{2}+\frac{3}{\mathrm{2ES}}(1-2\nu ){\sigma }_{H}^{2}\right]}^{s}\dot{p}\)

if \(p>{p}_{d}\)

\(D=0\)

otherwise

\({\sigma }_{\mathrm{eq}}\) is the equivalent von Mises stress

\({\sigma }_{H}\) is the hydrostatic stress

\({p}_{d}\) represents the damage threshold

\(S\) is a material characteristic (\(\mathrm{MPa}\))

\(s\) is a material characteristic

1.1. Material properties#

\(\mathrm{Temp}(°C)\)

\(E(\mathrm{MPa})\)

\(\nu\)

\(S(\mathrm{MPa})\)

\({P}_{d}\)

\(s\)

Case 1

Case 2

143006.0E+6

0.33

7.0

1.005E-6

0.8

1.003

143006.0E+6

0.33

7.0

1.005E-6

0.8

1.003

143006.0E+6

0.33

7.0

1.005E-6

0.8

1.003

Two exponent values

_images/Object_11.svg

are successively used for the validation of developments in CALC_CHAMP.

1.2. Loading#

The loading corresponds to a tensile test at constant temperature and at a fixed deformation rate. It is defined in paragraph [§2.2].