1. Reference problem#

1.1. Modeling A#

The analysis consists in determining the criterion of CROSSLAND and the criterion of DANG VAN - PAPADOPOULOS at a point in a structure subjected to periodic radial multiaxial loading.

Criterion of CROSSLAND:

\({\tau }_{a}+a{P}_{\mathit{max}}\mathrm{-}b\mathrm{\le }0\) where:

\(\begin{array}{cc}{\tau }_{a}\mathrm{=}\frac{1}{2}\underset{0\mathrm{\le }{t}_{0}\mathrm{\le }T}{\mathit{Max}}\underset{0\mathrm{\le }{t}_{1}\mathrm{\le }T}{\mathit{Max}}∥\tilde{s}({t}_{1})\mathrm{-}\tilde{s}({t}_{0})∥\mathrm{=}& \frac{1}{2}\underset{0\mathrm{\le }{t}_{0}\mathrm{\le }T}{\mathit{Max}}\underset{0\mathrm{\le }{t}_{1}\mathrm{\le }T}{\mathit{Max}}\sqrt{\frac{1}{2}({\tilde{s}}_{11}^{2}+{\tilde{s}}_{22}^{2}+{\tilde{s}}_{33}^{2}+2{\tilde{s}}_{12}^{2}+2{\tilde{s}}_{13}^{2}+2{\tilde{s}}_{23}^{2})}\\ \text{amplitude de scission}& \text{avec}\tilde{s}\text{déviateur du tenseur des contraintes}\sigma \end{array}\)

\({P}_{\mathit{max}}\mathrm{=}\underset{0\mathrm{\le }t\mathrm{\le }T}{\mathit{Max}}(\frac{1}{3}\mathit{trace}(\sigma ))\mathrm{=}\) maximum hydrostatic pressure

\(a\mathrm{=}({\tau }_{0}\mathrm{-}\frac{{d}_{0}}{\sqrt{3}})\mathrm{/}\frac{{d}_{0}}{3}\) and \(b\mathrm{=}{\tau }_{0}\)

with \({\tau }_{0}\) = endurance limit in pure alternating shear

\({d}_{0}\) = endurance limit in pure alternating traction-compression

The criterion is: \(\mathrm{Rcrit}={\tau }_{a}+a{P}_{\mathrm{max}}-b\)

If \(\mathrm{Rcrit}\) is negative or zero, there is no damage. If \(\mathrm{Rcrit}\) is positive, there is likely to be damage.

Criteria of DANG VAN - PAPADOPOULOS:

\({K}^{\text{*}}+a{P}_{\mathit{max}}\mathrm{-}b\mathrm{\le }0\)

where \({K}^{\text{*}}\mathrm{=}R\mathrm{/}\sqrt{2}\) where \(R\) radius of the smallest sphere circumscribed to the loading path in the space of the stress deviators \(\tilde{s}\).

\(R\mathrm{=}\underset{0\mathrm{\le }t\mathrm{\le }T}{\mathit{Max}}\sqrt{(\tilde{s}(t)\mathrm{-}{C}^{\text{*}})\mathrm{:}(\tilde{s}(t)\mathrm{-}{C}^{\text{*}})}\) where \({C}^{\text{*}}\) is the center of the hypersphere

\({C}^{\text{*}}\mathrm{=}\underset{C\epsilon K}{\mathit{Min}}\underset{0\mathrm{\le }t\mathrm{\le }T}{\mathit{Max}}\sqrt{(\tilde{s}(t)\mathrm{-}C)\mathrm{:}(\tilde{s}(t)\mathrm{-}C)}\)

\({P}_{\mathit{max}}\mathrm{=}\underset{0\mathrm{\le }t\mathrm{\le }T}{\mathit{Max}}(\frac{1}{3}\mathit{trace}(\sigma ))\mathrm{=}\) maximum hydrostatic pressure

\(a\mathrm{=}({\tau }_{0}\mathrm{-}\frac{{d}_{0}}{\sqrt{3}})\mathrm{/}(\frac{{d}_{0}}{3})\) and \(b\mathrm{=}{\tau }_{0}\)

with \({\tau }_{0}\) = endurance limit in pure alternating shear

\({d}_{0}\) = endurance limit in pure alternating traction-compression

The criterion is: \({R}_{\mathit{crit}}\mathrm{=}{K}^{\text{*}}+a{P}_{\mathit{max}}\mathrm{-}b\)

If \(\mathit{Rcrit}\) is negative or zero, there is no damage. If \(\mathrm{Rcrit}\) is positive, there is likely to be damage.

1.1.1. Material properties#

\({\tau }_{0}\) = endurance limit in pure alternating shear = \(352.\mathit{MPa}\)

\({d}_{0}\) = endurance limit in pure alternating traction-compression = \(540.97\mathit{MPa}\)

1.1.2. Loading history#

\(t\)

\({\sigma }_{\mathrm{xx}}(t)\)

—411.

\({\sigma }_{\mathrm{xy}}(t)\)

—205.

\({\sigma }_{\mathit{yy}}(t)\mathrm{=}{\sigma }_{\mathit{zz}}(t)\mathrm{=}{\sigma }_{\mathit{xz}}(t)\mathrm{=}{\sigma }_{\mathit{yz}}(t)\)

Charging is considered to be periodic.

1.2. B modeling#

The material properties and the loading history are identical and obtained from test cases SSLV135A.

1.3. C modeling#

The material properties and the loading history are identical and obtained from test cases SSLV135E.

1.4. D modeling#

The material properties and the loading history are identical and obtained from test case SSLV135F.

1.5. Modeling E#

The material properties and the loading history are identical and obtained from test cases SSLV135B.

1.6. F modeling#

The material properties and the loading history are identical and obtained from test cases SSLV135G

1.7. G modeling#

Material properties and loading history are identical and obtained from test cases SSLV135H and SSLV135A