1. Reference problem#
1.1. Geometry#
F
D
C
E
B
A
Coordinates of the points (\(m\)):
Point |
\(X\) |
|
\(A\) |
0.425 |
-10 |
\(B\) |
1,1225 |
-10 |
\(C\) |
1,1225 |
0 |
\(D\) |
0.425 |
0 |
\(E\) |
10 |
-10 |
\(F\) |
10 |
0 |
The part delimited by \(\mathit{ABCD}\) will be called \(\mathit{BO}\) and the part \(\mathit{BEFC}\), \(\mathit{BG}\).
1.2. Material properties#
The properties of the material are shown in the table below.
Liquid water |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) Coefficient of thermal expansion of liquid (\({K}^{\mathrm{-}1}\)) Dynamic viscosity of liquid water (\(\mathit{Pa.s}\)) |
103 4180 10-4 10-3 |
Gaz |
Specific heat (\({\mathit{J.K}}^{\mathrm{-}1}\)) Molar mass (\({\mathit{kg.mol}}^{\mathrm{-}1}\)) |
1000 0.02896 1.8. 10-5 |
Sturdy (\(\mathit{BO}\)) |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Drained Young’s Modulus \(E\) (\(\mathit{Pa}\)) Poisson’s Ratio |
2670 1.9.1020 0.2 |
Initial state (\(\mathit{BO}\)) |
Porosity Temperature (\(K\)) Gas Pressure (\(\mathit{Pa}\)) Vapor Pressure (\(\mathit{Pa}\)) Initial Capillary Pressure (\(\mathit{Pa}\)) |
0.35 293 1E5 2320 5.107 (\(S\mathrm{=}\mathrm{0,57}\)) |
Homogenized coefficients (\(\mathit{BO}\)) |
Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Saturation Intrinsic permeability (\({m}^{2}\)) Relative liquid permeability () Relative liquid permeability Relative gas permeability (\({\mathit{J.K}}^{\mathrm{-}1}\)) Biot Thermal conductivities |
|
Solid (BG) |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Drained Young’s Modulus \(E\) (\(\mathit{Pa}\)) Poisson’s Ratio |
2670 1.9.1020 0.2 |
Initial state (BG) |
Porosity Temperature (\(K\)) Gas Pressure (\(\mathit{Pa}\)) Vapor Pressure (\(\mathit{Pa}\)) Initial Capillary Pressure (\(\mathit{Pa}\)) |
0.05 293 1E5 2320 7.107 (S=0.81) |
Homogenized coefficients (BG) |
Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Saturation Intrinsic permeability (\({m}^{2}\)) Relative liquid permeability () Relative liquid permeability () Saturation Intrinsic permeability () BioTthermal conductivity \({\mathit{J.K}}^{\mathrm{-}1}\) |
|
1.3. Boundary conditions and loads#
On all edges: Zero hydraulic flow
The only driver here is the saturation of one medium by another.