1. Reference problem#

1.1. Geometry#

We consider a bar with a length \(\mathrm{1m}\) and a cross section \(\mathrm{0.1m}\mathrm{\times }\mathrm{0.1m}\).

H

G

B

C

D

F

_images/Shape9.gif

E

Z

A

B

Coordinates of the points (\(m\)):

\(X\)

\(Y\)

\(Z\)

\(X\)

\(Y\)

\(Z\)

\(A\)

0

0

0

0

\(C\)

1

0.1

0

\(B\)

1

0

0

0

\(D\)

0

0.1

0

\(E\)

0

0

-0,1

-0,1

\(G\)

1

0,1

-0,1

F

1

0

-0,1

-0,1

\(H\)

0

0,1

-0,1

1.2. Material properties#

Only the properties on which the solution depends are given here. The command file contains other material data (elasticity modules, thermal conductivity…) that play no role in the solution of the problem being treated.

Liquid water

Density (

\({\mathit{kg.m}}^{\mathrm{-}3}\)

)

Specific heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) Dynamic viscosity of liquid water (\(\mathit{Pa.s}\)) coefficient of thermal expansion of liquid (\({K}^{\mathrm{-}1}\)) Relative permeability to water

103

  1. 0.001 0.

_images/Object_1.svg

Vapeur

Specific heat (

\({\mathit{J.K}}^{\mathrm{-}1}\)

)

Molar mass (\({\mathit{kg.mol}}^{\mathrm{-}1}\))

  1. 0.01

Gaz

Specific heat (

\({\mathit{J.K}}^{\mathrm{-}1}\)

)

Molar mass (\({\mathit{kg.mol}}^{\mathrm{-}1}\)) Relative gas permeability Gas viscosity (\({\mathit{kg.m}}^{\mathrm{-}{\mathrm{1.s}}^{\mathrm{-}1}}\))

#. 0.01 #. .. image:: images/Object_2.svg

width:

74

height:

21

  1. 0.001

Dissolved air

Specific heat (

\({\mathit{J.K}}^{\mathrm{-}1}\)

)

Henry’s constant (\(\mathit{Pa.}{m}^{3.}{\mathit{mol}}^{\mathrm{-}1}\))

  1. 50000

Initial state

Porosity

Temperature (\(K\)) Gas Pressure (\(\mathit{Pa}\)) Gas Pressure () Vapor Pressure (\(\mathit{Pa}\)) Capillary Pressure (Pa) Initial Liquid Saturation

1

300 1.01E5 1000 1.E6 0.4

Constants

Ideal gas constant

8.32

Homogenized coefficients

Homogenized density (

\({\mathit{kg.m}}^{\mathrm{-}3}\)

)

Sorption isothermal sorption coefficient Biot Fick Vapor (\({m}^{2.}{s}^{\mathrm{-}1}\)) Fick dissolved air (\({m}^{2.}{s}^{\mathrm{-}1}\)) Intrinsic permeability (\({m}^{2}\))

2200

_images/Object_3.svg

0 \(\mathit{FV}\mathrm{=}0\) \(\mathit{FA}\mathrm{=}\mathrm{6 }\mathrm{.}E\mathrm{-}10\) \(\mathit{Kint}\mathrm{=}1.E\mathrm{-}19\)

1.3. Boundary conditions and loads#

Across the entire domain, we want to:

_images/Object_4.svg _images/Object_5.svg

On all sides: Zero hydraulic and thermal flows.

We are now going to linearize \({p}_{\mathit{vp}}\) according to \({p}_{w}\).

Writing of \({p}_{\mathit{vp}}\) linear function of \({p}_{w}\) :

Section 4.2.3 of the Aster [R7.01.11] reference document gives us the relationship:

_images/Object_8.svg

.

If we linearize this expression we get:

_images/Object_9.svg

that can be written in the form:

_images/Object_10.svg

Eq 1.3-1

with

_images/Object_11.svg

and

_images/Object_12.svg

On the left edge of the bar (\(\mathit{AEHD}\)) we impose

_images/Object_13.svg