5. C modeling#
5.1. Characteristics of modeling#
Modeling COQUE_3D. Unit thickness (to find the same reference solutions as the C_ PLAN case). The linear kinematic work hardening behavior is modelled in four ways:
or using behavior VMIS_CINE_LINE, by taking:
D_ SIGM_EPSI = \(\mathrm{E.C}(T)/(E+C(T))\) with \(C(T)=(1000+\mathrm{2990.T})\)
or using behavior VMIS_ECMI_LINE, by taking:
D_ SIGM_EPSI = E.C (T)/(E+C (T)) and the Prager constant \(\mathrm{PRAG}=2/3C(T)\)
or using behavior VMIS_CIN1_CHAB, keeping only linear kinematic work hardening: All you have to do is then take: \({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({C}_{I}=C(T)\), \({G}_{0}=0\)
or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take:
\({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({\mathrm{C1}}_{I}={\mathrm{C2}}_{I}=C(T)/2\), \({\mathrm{G1}}_{0}={\mathrm{G2}}_{0}=0\)
Temporal discretization: 1 time step between \(t=\mathrm{0s}\) and \(t=\mathrm{1s}\) and 40 time steps between \(t=\mathrm{1s}\) and \(t=\mathrm{2s}\).
5.2. Characteristics of the mesh#
The mesh includes a QUAD8 mesh
5.3. Tested sizes and results#
Behavior |
Moment |
Movement and effort |
Reference |
Aster |
% difference |
VMIS_CINE_LINE |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |
|
VMIS_ECMI_LINE |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |
|
VMIS_CIN1_CHAB |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |
|
VMIS_CIN2_CHAB |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |