5. C modeling#

5.1. Characteristics of modeling#

Modeling COQUE_3D. Unit thickness (to find the same reference solutions as the C_ PLAN case). The linear kinematic work hardening behavior is modelled in four ways:

  • or using behavior VMIS_CINE_LINE, by taking:

D_ SIGM_EPSI = \(\mathrm{E.C}(T)/(E+C(T))\) with \(C(T)=(1000+\mathrm{2990.T})\)

  • or using behavior VMIS_ECMI_LINE, by taking:

D_ SIGM_EPSI = E.C (T)/(E+C (T)) and the Prager constant \(\mathrm{PRAG}=2/3C(T)\)

  • or using behavior VMIS_CIN1_CHAB, keeping only linear kinematic work hardening: All you have to do is then take: \({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({C}_{I}=C(T)\), \({G}_{0}=0\)

  • or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take:

\({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({\mathrm{C1}}_{I}={\mathrm{C2}}_{I}=C(T)/2\), \({\mathrm{G1}}_{0}={\mathrm{G2}}_{0}=0\)

Temporal discretization: 1 time step between \(t=\mathrm{0s}\) and \(t=\mathrm{1s}\) and 40 time steps between \(t=\mathrm{1s}\) and \(t=\mathrm{2s}\).

5.2. Characteristics of the mesh#

The mesh includes a QUAD8 mesh

5.3. Tested sizes and results#

Behavior

Moment

Movement and effort

Reference

Aster

% difference

VMIS_CINE_LINE

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0

VMIS_ECMI_LINE

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0

VMIS_CIN1_CHAB

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0

VMIS_CIN2_CHAB

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0