4. B modeling#
4.1. Characteristics of modeling#
Modeling DKT. Unit thickness (to find the same reference solutions as the C_ PLAN case). Linear kinematic work hardening behavior is modelled in four ways:
or using behavior VMIS_CINE_LINE, by taking:
D_ SIGM_EPSI = \(E.C(T)/(E+C(T))\) with \(C(T)=(1000+2990.T)\)
or using behavior VMIS_ECMI_LINE, by taking:
D_ SIGM_EPSI = \(E.C(T)/(E+C(T))\) and the Prager constant \(\mathit{PRAG}=2/3C(T)\)
or using behavior VMIS_CIN1_CHAB, keeping only linear kinematic work hardening: All you have to do is then take: \({R}_{0}={R}_{I}=\mathit{SIGY}\), \(b=0\), \({C}_{I}=C(T)\), \({G}_{0}=0\)
or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take:
\({R}_{0}={R}_{I}=\mathit{SIGY}\), \(b=0\), \(C{1}_{I}=C{2}_{I}=C(T)/2\), \(G{1}_{0}=G{2}_{0}=0\)
Temporal discretization: 1 time step between \(t=0s\) and \(t=1s\) and 40 time steps between \(t=1s\) and \(t=2s\).
4.2. Characteristics of the mesh#
The mesh consists of one QUAD4 mesh and two TRIA3 mesh
4.3. Tested sizes and results#
Behavior |
Moment |
Movement and effort |
Reference |
Aster |
% difference |
VMIS_CINE_LINE |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—-3 |
2.85 10—3 |
0 |
|
VMIS_ECMI_LINE |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |
|
VMIS_CIN1_CHAB |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |
|
VMIS_CIN2_CHAB |
1 |
|
210 |
210 |
0 |
1 |
DY |
1.105 10—2 |
1.105 10—2 |
0 |
|
1.1 |
DY |
1.115 10—2 |
1.115 10—2 |
0 |
|
2 |
DY |
2.85 10—3 |
2.85 10—3 |
0 |