4. B modeling#

4.1. Characteristics of modeling#

Modeling DKT. Unit thickness (to find the same reference solutions as the C_ PLAN case). Linear kinematic work hardening behavior is modelled in four ways:

  • or using behavior VMIS_CINE_LINE, by taking:

D_ SIGM_EPSI = \(E.C(T)/(E+C(T))\) with \(C(T)=(1000+2990.T)\)

  • or using behavior VMIS_ECMI_LINE, by taking:

D_ SIGM_EPSI = \(E.C(T)/(E+C(T))\) and the Prager constant \(\mathit{PRAG}=2/3C(T)\)

  • or using behavior VMIS_CIN1_CHAB, keeping only linear kinematic work hardening: All you have to do is then take: \({R}_{0}={R}_{I}=\mathit{SIGY}\), \(b=0\), \({C}_{I}=C(T)\), \({G}_{0}=0\)

  • or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take:

\({R}_{0}={R}_{I}=\mathit{SIGY}\), \(b=0\), \(C{1}_{I}=C{2}_{I}=C(T)/2\), \(G{1}_{0}=G{2}_{0}=0\)

Temporal discretization: 1 time step between \(t=0s\) and \(t=1s\) and 40 time steps between \(t=1s\) and \(t=2s\).

4.2. Characteristics of the mesh#

The mesh consists of one QUAD4 mesh and two TRIA3 mesh

4.3. Tested sizes and results#

Behavior

Moment

Movement and effort

Reference

Aster

% difference

VMIS_CINE_LINE

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—-3

2.85 10—3

0

VMIS_ECMI_LINE

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0

VMIS_CIN1_CHAB

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0

VMIS_CIN2_CHAB

1

NYY

210

210

0

1

DY

1.105 10—2

1.105 10—2

0

1.1

DY

1.115 10—2

1.115 10—2

0

2

DY

2.85 10—3

2.85 10—3

0