3. Modeling A#
3.1. Characteristics of modeling#
C_ PLAN modeling. Linear kinematic work hardening behavior is modelled in four ways:
or using behavior VMIS_CINE_LINE, by taking:
D_ SIGM_EPSI = \(\mathrm{E.C}(T)/(E+C(T))\) with \(C(T)=(1000+\mathrm{2990.T})\)
or using behavior VMIS_ECMI_LINE, by taking:
D_ SIGM_EPSI = \(\mathrm{E.C}(T)/(E+C(T))\) and the Prager constant \(\mathrm{PRAG}=2/3C(T)\)
or using behavior VMIS_CIN1_CHAB, keeping only linear kinematic work hardening: All you have to do is then take: \({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({C}_{I}=C(T)\), \({G}_{0}=0\)
or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take:
\({R}_{0}={R}_{I}=\mathrm{SIGY}\), \(b=0\), \({\mathrm{C1}}_{I}={\mathrm{C2}}_{I}=C(T)/2\), \({\mathrm{G1}}_{0}={\mathrm{G2}}_{0}=0\)
Temporal discretization: 1 time step between \(t=\mathrm{0s}\) and \(t=\mathrm{1s}\) and 40 time steps between \(t=\mathrm{1s}\) and \(t=\mathrm{2s}\).
3.2. Characteristics of the mesh#
The mesh includes a QUAD4 mesh
3.3. Tested sizes and results#
Behavior |
Instant |
Deformation and Stress |
Reference |
Aster |
% difference |
|
VMIS_CINE_LINE |
1.1 |
|
0.01 |
0.01 |
0.01 |
|
2 |
|
8.E—4 |
8.E—4 |
0 |
||
|
210 |
210 |
0 |
|||
1 |
|
5.e—7 |
5.e—7 |
|||
VMIS_ECMI_LINE |
t1=1.1 |
|
0.01 |
0.01 |
||
2 |
|
8.E—4 |
8.E—4 |
0 |
||
|
210 |
210 |
0 |
|||
1 |
|
|||||
VMIS_CIN1_CHAB |
t1=1.1 |
|
0.01 |
0.01 |
||
2 |
|
8.E—4 |
8.E—4 |
0 |
||
|
210 |
210 |
0 |
|||
1 |
|
5.e—7 |
5.e—7 |
|||
VMIS_CIN2_CHAB |
t1=1.1 |
|
0.01 |
0.01 |
||
2 |
|
8.E—4 |
8.E—4 |
0 |
||
|
210 |
210 |
0 |
|||
1 |
|
2.8.e—5 |
2.8.e—5 |