4. B modeling#

4.1. Characteristics of modeling#

The axisymmetric modeling is carried out on a slice of the tube.

4.1.1. Thermal analysis#

We test the unit heat shock \((\Delta {T}_{U}=1°C)\) and the thermal shock \(\mathrm{\Delta }T=50°C\) using the proposed methodology, with the « AXIS_DIAG » modeling.

Unit case \((\Delta {T}_{U}=1°C)\)

Boundary conditions:

  • Extracts: \({T}_{\mathit{imposée}}={T}_{\mathit{Initiale}}\)

  • Intrados: Convection \(h=20000W/{m}^{2}/°C\) \({T}_{\mathit{EXT}}={T}_{\mathit{Fluide}}={T}_{\mathit{Initiale}}+\Delta {T}_{U}\)

Initial conditions: \({T}_{\mathit{Initiale}}=0.°C\)

Case \((\Delta T=50°C;\Delta T=100°C;\Delta T=200°C)\)

Boundary conditions:

  • Extracts: \({T}_{\mathit{imposée}}={T}_{\mathit{Initiale}}\)

  • Intrados: Convection \(h=20000W/{m}^{2}/°C\) \({T}_{\mathit{EXT}}={T}_{\mathit{Fluide}}={T}_{\mathit{Initiale}}+\Delta T\)

Initial conditions: \({T}_{\mathit{Initiale}}=20.°C\)

4.1.2. Mechanical analysis#

We test the mechanical response for unit shock \((\Delta {T}_{U}=1°C)\) and thermal shock \(\mathrm{\Delta }T=50°C\) using the proposed methodology, with the « AXIS » modeling.

  • Boundary conditions: EF rating: \(\mathit{DY}=0.\)

  • Reference temperature: \({T}_{\mathit{Référence}}=0.°C\)

  • Thermal loads: \(\mathrm{\Delta }T=50°C\)

4.2. Characteristics of the mesh#

To properly take into account the thermal shock on the inner wall of the tube, refinement has been imposed.

For mechanical modeling, the same mesh is used but with quadratic cells.

  • Number of nodes: 504 linear

  • Number of meshes and types: 460 QUAD4 (thermal analysis)

  • Number of meshes and types: 460 QUAD8 (mechanical analysis)

4.3. B modeling results#

4.3.1. Unitary case#

Only a non-regression test is used on this calculation, which does not use the CALC_THERMECA_MULT macro command.

4.3.2. Heat shock \(\mathrm{\Delta }T=50°C\)#

These results were obtained with CALC_THERMECA_MULT and the following coefficients:

\({T(x,t)}_{\Delta T}=\beta \mathrm{.}{\stackrel{̃}{T}}_{\Delta {T}_{U}}(x,t)+{T}_{\mathit{initiale}}\)

Thermal shock

\(\beta\)

\({T}_{\mathit{initiale}}(°C)\)

\(\Delta T=50°C\)

Temperature (°C) \(\Delta T=50°C\)

Time

Location

Reference type

Reference

Tolerance (%)

0.1 sec

Intrados

“AUTRE_ASTER”

39.60439148764347

A

“AUTRE_ASTER”

26.057424514530002

B

“AUTRE_ASTER”

22.127310880200298

C

“AUTRE_ASTER”

20.072931376414274

D

“AUTRE_ASTER”

20.000074233637914

3.0 s

Intrados

“AUTRE_ASTER”

62.791991296545994

A

“AUTRE_ASTER”

57.91447605545711

B

“AUTRE_ASTER”

54.26645281787711

C

“AUTRE_ASTER”

45.020909667984306

D

“AUTRE_ASTER”

31.02483220030017

4.3.3. Mechanical analyses#

Stress (Pa) \(\Delta T=50°C\)

Time

Location

Constraint

Reference type

Reference

Tolerance

0.1 sec

Intrados

SIXX

“AUTRE_ASTER”

-2223.323126038972

SIYY

“AUTRE_ASTER”

-78755606.54685567

  1. %

SIZZ

“AUTRE_ASTER”

-78753557.89057745

  1. %

VMIS

“AUTRE_ASTER”

78752358.91557704

  1. %

A

SIXX

“AUTRE_ASTER”

-1225712.1785479188

  1. %

SIYY

“AUTRE_ASTER”

-22196222.627284177

  1. %

SIZZ

“AUTRE_ASTER”

-20970978.954915553

  1. %

VMIS

“AUTRE_ASTER”

20385606.92198515

  1. %

B

SIXX

“AUTRE_ASTER”

-1428428.090007163

  1. %

SIYY

“AUTRE_ASTER”

-2329006.724762771

  1. %

SIZZ

“AUTRE_ASTER”

-900846.4000951699

  1. %

VMIS

“AUTRE_ASTER”

1247569.5007786928

  1. %

C

SIXX

“AUTRE_ASTER”

-1152140.4888492671

  1. %

SIYY

“AUTRE_ASTER”

4900600.802635529

  1. %

SIZZ

“AUTRE_ASTER”

6052925.081161121

  1. %

VMIS

“AUTRE_ASTER”

6703597.4346061945

  1. %

D

SIXX

“AUTRE_ASTER”

-499617.21189450816

  1. %

SIYY

“AUTRE_ASTER”

5263164.8315241365

  1. %

SIZZ

“AUTRE_ASTER”

5763009.107557128

  1. %

VMIS

“AUTRE_ASTER”

6028267.390181367

  1. %

Extrados

SIXX

“AUTRE_ASTER”

1437.4754262985766

SIYY

“AUTRE_ASTER”

5263716.868909629

  1. %

SIZZ

“AUTRE_ASTER”

5262478.893439884

  1. %

VMIS

“AUTRE_ASTER”

5261660.514976556

  1. %

4.4. notes#

  • For modeling B, if we take a zero temperature for the unit case, we notice larger relative differences for the unit case (Max 10%). This difference is much smaller for 50° C. The origin of these values is mainly due to the presence of the non-zero initial temperature for 50° C. or for the current version of the unit calculation.

Example: Given two values T1= 1 and T2=1.1, the relative error is:

        • by 10% with an initial temperature of 0°C

        • by 0.47% with an initial temperature of 20°C