3. Modeling A#
3.1. Characteristics of modeling#
Volume modeling is carried out on ¼ of the tube.
3.2. Thermal analysis#
We test the unit heat shock \((\Delta {T}_{U}=1°C)\) and the « real » thermal shock \(\mathrm{\Delta }T=50°C\) using the proposed methodology, with the « 3D_ DIAG » modeling.
Unit case \((\Delta {T}_{U}=1°C)\)
Boundary conditions:
Extracts: \({T}_{\mathit{imposée}}={T}_{\mathit{Initiale}}\)
Intrados: Convection \(h=20000W/{m}^{2}/°C\) \({T}_{\mathit{EXT}}={T}_{\mathit{Fluide}}={T}_{\mathit{Initiale}}+\Delta {T}_{U}\)
Zero flow at the level of the planes of symmetry
Initial conditions: \({T}_{\mathit{Initiale}}=20.°C={T}_{\mathit{Référence}}\)
Case \(\mathrm{\Delta }T=50°C\)
Boundary conditions:
Extracts: \({T}_{\mathit{imposée}}={T}_{\mathit{Initiale}}\)
Intrados: Convection \(h=20000W/{m}^{2}/°C\) \({T}_{\mathit{EXT}}={T}_{\mathit{Fluide}}={T}_{\mathit{Initiale}}+\Delta T\)
Zero flow at the level of the planes of symmetry
Initial conditions: \({T}_{\mathit{Initiale}}=20.°C\)
3.2.1. Mechanical analysis#
We test the mechanical response for unit shock \((\Delta {T}_{U}=1°C)\) and thermal shock \(\mathrm{\Delta }T=50°C\) using the proposed methodology, with « 3D » modeling.
Boundary conditions: master plan XOY: \(\mathit{DZ}=0.\)
Symmetry conditions:
Main Plan XOZ: \(\mathit{DY}=0.\)
Main Plan YOZ: \(\mathit{DX}=0.\)
Reference temperature: \({T}_{\mathit{Référence}}=20.°C\)
Thermal loads: \(\mathrm{\Delta }T=50°C\)
3.3. Characteristics of the mesh#
To properly take into account the thermal shock on the inner wall of the tube, refinement has been imposed.
For mechanical modeling, the same mesh is used but with quadratic cells.
Number of nodes: 2520 linear
Number of meshes and types: 1840 HEXA8 (thermal analysis)
Number of meshes and types: 1840 HEXA20 (mechanical analysis)
3.4. Results of modeling A#
3.4.1. Unitary case#
Only a non-regression test is performed on these thermal and mechanical calculations which do not use the CALC_THERMECA_MULT macro command.
3.4.2. Heat shock \(\mathrm{\Delta }T=50°C\)#
3.4.2.1. Thermal analyses#
Temperature (°C) \(\Delta T=50°C\) |
||||
Time |
Location |
Reference type |
Reference |
Tolerance (%) |
0.1 sec |
Intrados |
“AUTRE_ASTER” |
42.22934518732506 |
|
A |
“AUTRE_ASTER” |
26.01122459885759 |
||
B |
“AUTRE_ASTER” |
21.870849415508467 |
||
C |
“AUTRE_ASTER” |
20.0473226322084 |
||
D |
“AUTRE_ASTER” |
20.000032488497183 |
||
3.0 s |
Intrados |
“AUTRE_ASTER” |
66.47322145431414 |
|
A |
“AUTRE_ASTER” |
61.29797584453274 |
||
B |
“AUTRE_ASTER” |
57.358943368182715 |
||
C |
“AUTRE_ASTER” |
47.16496697879001 |
||
D |
“AUTRE_ASTER” |
31.506146137279625 |
3.4.2.2. Mechanical analyses#
Stress (Pa) \(\Delta T=50°C\) |
|||||
Time |
Location |
Constraint |
Reference type |
Reference |
Tolerance |
0.1 sec |
Intrados |
SIXX |
“AUTRE_ASTER” |
37489.29855405912 |
200 |
SIYY |
“AUTRE_ASTER” |
-90763742.58663052 |
|
||
SIZZ |
“AUTRE_ASTER” |
-89835467.18538839 |
|
||
VMIS |
“AUTRE_ASTER” |
90353481.53295466 |
|
||
A |
SIXX |
“AUTRE_ASTER” |
-1373909.820313106 |
|
|
SIYY |
“AUTRE_ASTER” |
-21611891.279474393 |
|
||
SIZZ |
“AUTRE_ASTER” |
-22078479.83997749 |
|
||
VMIS |
“AUTRE_ASTER” |
20478467.497951064 |
|
||
B |
SIXX |
“AUTRE_ASTER” |
-1514515.7112189943 |
|
|
SIYY |
“AUTRE_ASTER” |
-521744.0661440513 |
|
||
SIZZ |
“AUTRE_ASTER” |
-1231398.7126009488 |
|
||
VMIS |
“AUTRE_ASTER” |
1058986.1070860107 |
|
||
C |
SIXX |
“AUTRE_ASTER” |
-1162145.1699433196 |
|
|
SIYY |
“AUTRE_ASTER” |
5599015.596422898 |
|
||
SIZZ |
“AUTRE_ASTER” |
5110992.015038196 |
|
||
VMIS |
“AUTRE_ASTER” |
6537321.490726789 |
|
||
D |
SIXX |
“AUTRE_ASTER” |
-492556.42792592593 |
|
|
SIYY |
“AUTRE_ASTER” |
5280378.736995371 |
|
||
SIZZ |
“AUTRE_ASTER” |
5401344.682695183 |
|
||
VMIS |
“AUTRE_ASTER” |
5835328.274520403 |
|
||
Extrados |
SIXX |
“AUTRE_ASTER” |
-18026.486515487028 |
||
SIYY |
“AUTRE_ASTER” |
4861145.702066543 |
|
||
SIZZ |
“AUTRE_ASTER” |
5535035.500733721 |
|
||
VMIS |
“AUTRE_ASTER” |
5248692.688594596 |
|