2. Benchmark solution#
2.1. Calculation method used for the reference solution#
The deformation due to pressure alone is given by:
\({\varepsilon }_{\mathit{zz}}\mathrm{=}\frac{(1\mathrm{-}2\nu )(2{R}_{e}\mathrm{-}h)}{\mathrm{4Eh}}p\mathrm{=}3.714\mathrm{\times }{10}^{\mathrm{-}3}\), \({R}_{e}\mathrm{=}\) outer radius
The axial displacement due to pressure is given by:
\({U}_{z}\mathrm{=}Z{\varepsilon }_{\mathit{zz}}\)
The deformations due to thermal loading are equal to:
\({\varepsilon }_{\mathit{rr}}\mathrm{=}{\varepsilon }_{\theta \theta }\mathrm{=}{\varepsilon }_{\mathit{zz}}\mathrm{=}\alpha \Delta T\mathrm{=}1.2\mathrm{\times }{10}^{\mathrm{-}3}\)
The radial displacement due to thermal loading is equal to:
\({U}_{r}\mathrm{=}r{\varepsilon }_{\mathit{rr}}\mathrm{=}1.2\mathrm{\times }{10}^{\mathrm{-}3}r\)
2.2. Benchmark results#
Radial and axial deformation and displacement at points \(A,B,C,D\) due to thermal loading.
Deformation and axial displacement at points \(A,B,C,D\) due to pressure.
2.3. Uncertainty about the solution#
Analytical solution.