3. Modeling A#

3.1. Characteristics of modeling#

AXIS, \(\mathit{Q8}\) mesh

Breakdown:

10 elements depending on the length

1 element in the thickness

Boundary conditions:

in \(A\), \(B\)

DDL_IMPO = (GROUP_NO = “A”, DY= 0.)

DDL_IMPO = (GROUP_NO = “B”, DY= 0.)

Pressure + shape effect: field \(U\)

PRES_REP:

(GROUP_MA = cont_pr, PRES = 2.E8)

FORCE_CONTOUR:

(GROUP_MA = effond, FY= 1.95E9)

Thermal expansion: field \({U}_{1}\)

char_no:

CREA_CHAMP

(AFFE = (TOUT = “OUI”, NOM_CMP = “TEMP”, VALE = 100.))

char_th:

AFFE_MATERIAU

(AFFE_VARC = F (TOUT = “OUI”, CHAM_GD = “”, = CHAR_NO, VALE_REF = 0., NOM_VARC = “TEMP”,)

Pre-deformations: field \({U}_{2}\)

PRE_EPSI:

(TOUT = “OUI”, EPXX = 1.2E-3, EPYY = 1.2E-3,

EPZZ = 1.2E-3, EPXY = 0.)

Node names:

\(A\mathrm{=}\mathit{N1}\)

\(B\mathrm{=}\mathit{N2}\)

\(C\mathrm{=}\mathit{N3}\)

\(D\mathrm{=}\mathit{N4}\)

3.2. Characteristics of the mesh#

Number of knots: 53

Number of meshes and types: 10 QUAD8, 22 SEG3

3.3. Tested sizes and results#

Results for fields \({U}_{1}\), \({U}_{2}\), \(U\)

Field

Location

Variables

Reference

Thermal field \({U}_{1}\)

\(A\)

\(\mathit{Ur}(\mathit{DX})\)

5.7 x 10-5

\(B\)

\(\mathit{Ur}(\mathit{DX})\)

6 x 10-5

\(C\)

\(\mathit{Ur}(\mathit{DX})\)

6 x 10-5

\(\mathit{DY}\)

1.2 x 10-3

\(D\)

\(\mathit{Ur}(\mathit{DX})\)

5.7 x 10-5

\(U(\mathit{DY})\)

1.2 x 10-3

\(A\), mesh \(\mathit{M1}\)

\({\varepsilon }_{\mathit{rr}}\)

1.2 x 10-3

\({\varepsilon }_{\theta \theta }\)

1.2 x 10-3

\({\varepsilon }_{\mathit{zz}}\)

1.2 x 10-3

\(B\), mesh \(\mathit{M1}\)

\({\varepsilon }_{\mathit{rr}}\)

1.2 x 10-3

\({\varepsilon }_{\theta \theta }\)

1.2 x 10-3

\({\varepsilon }_{\mathit{zz}}\)

1.2 x 10-3

\(C\), mesh \(\mathit{M10}\)

\({\varepsilon }_{\mathit{rr}}\)

1.2 x 10-3

\({\varepsilon }_{\theta \theta }\)

1.2 x 10-3

\({\varepsilon }_{\mathit{zz}}\)

1.2 x 10-3

\(D\), mesh \(\mathit{M10}\)

\({\varepsilon }_{\mathit{rr}}\)

1.2 x 10-3

\({\varepsilon }_{\theta \theta }\)

1.2 x 10-3

\({\varepsilon }_{\mathit{zz}}\)

1.2 x 10-3

Pressure field \(U\)

\(C\)

\({U}_{\theta }(\mathit{DY})\)

3.714 x 10-3

\(D\)

\({U}_{\theta }(\mathit{DY})\)

3.714 x 10-3

\(C\), mesh \(\mathit{M10}\)

\({\varepsilon }_{\theta \theta }\)

3.714 x 10-3

\(D\), mesh \(\mathit{M10}\)

\({\varepsilon }_{\theta \theta }\)

3.714 x 10-3

Field \({U}_{2}\)

\(C\)

\({U}_{\theta \theta }\)

4.914 x 10-3

\(D\)

\({U}_{\theta \theta }\)

4.914 x 10-3

\(C\), mesh

\({\varepsilon }_{\theta \theta }\)

4.914 x 10-3

\(D\), mesh

\({\varepsilon }_{\theta \theta }\)

4.914 x 10-3

3.4. notes#

  • The aim of the test is not to obtain high precision in terms of the results, but simply to verify the relationship: \({U}_{2}\mathrm{=}U+{U}_{1}\); therefore, the calculation was only carried out with a rough mesh.

  • It can be seen that the relationship sought is well verified at the free end of the cylinder.

  • It is also verified that the deformation field resulting from thermal expansion is uniformly equal to \(1.2\mathrm{\times }{10}^{\mathrm{-}3}\).