1. Reference problem#

1.1. Geometry#

_images/1000000000000400000003A99482B2EEC56C2432.png

Plate width:

\(W=\mathrm{0,6}m\)

Plate length:

\(L=\mathrm{0,3}m\)

Crack length:

\(\mathrm{2a}=\mathrm{0,3}m\)

1.2. Material properties#

Notation for thermoelastic properties:

_images/Object_1.svg

We are limited to isotropic material, both from a thermal and mechanical point of view:

\({E}_{x}={E}_{y}={2.10}^{5}\mathrm{MPa}\)

\({\nu }_{x}={\nu }_{y}=\mathrm{0,3}\)

\({\alpha }_{x}={\alpha }_{y}=\mathrm{1,2}{10}^{-5}°{C}^{-1}\)

\({\lambda }_{x}={\lambda }_{y}=54W/m°C\)

1.3. Boundary conditions and loading#

Two models are considered:

  • the half-model \(x\ge 0\)

  • the complete model

Mechanical boundary conditions:

  • half-model

\(\mathrm{UX}=0\) along the axis of symmetry \(X=0\)

\(\mathrm{UY}=0\) at point \((W/\mathrm{2,0})\)

  • full model

\(\mathrm{UX}=0\) at point \((\mathrm{0,}L/2)\)

\(\mathrm{UY}=0\) at points \((–L/\mathrm{2,0})\) and \((L/\mathrm{2,0})\)

Thermal boundary conditions:

  • half-model

\(T=100°C\) on the top edge \(Y=L/2\)

\(T=–100°C\) on the bottom edge \(Y=–L/2\)

zero flow on the axis of symmetry, on the free edge \(X=W/2\) and on the edge of the crack

  • full model

\(T=100°C\) on the top edge \(Y=L/2\)

\(T=–100°C\) on the bottom edge \(Y=–L/2\)

zero flux on free edges \(X=\pm W/2\) and on the edge of the crack