Reference problem ===================== Geometry --------- .. image:: images/1000000000000400000003A99482B2EEC56C2432.png :width: 3.4165in :height: 3.1252in .. _RefImage_1000000000000400000003A99482B2EEC56C2432.png: .. csv-table:: "Plate width:", ":math:`W=\mathrm{0,6}m`" "Plate length:", ":math:`L=\mathrm{0,3}m`" "Crack length:", ":math:`\mathrm{2a}=\mathrm{0,3}m`" Material properties ---------------------- Notation for thermoelastic properties: .. image:: images/Object_1.svg :width: 327 :height: 234 .. _RefImage_Object_1.svg: We are limited to isotropic material, both from a thermal and mechanical point of view: :math:`{E}_{x}={E}_{y}={2.10}^{5}\mathrm{MPa}` :math:`{\nu }_{x}={\nu }_{y}=\mathrm{0,3}` :math:`{\alpha }_{x}={\alpha }_{y}=\mathrm{1,2}{10}^{-5}°{C}^{-1}` :math:`{\lambda }_{x}={\lambda }_{y}=54W/m°C` Boundary conditions and loading ------------------------------------ Two models are considered: * the half-model :math:`x\ge 0` * the complete model **Mechanical boundary conditions:** * half-model :math:`\mathrm{UX}=0` along the axis of symmetry :math:`X=0` :math:`\mathrm{UY}=0` at point :math:`(W/\mathrm{2,0})` * full model :math:`\mathrm{UX}=0` at point :math:`(\mathrm{0,}L/2)` :math:`\mathrm{UY}=0` at points :math:`(–L/\mathrm{2,0})` and :math:`(L/\mathrm{2,0})` **Thermal boundary conditions:** * half-model :math:`T=100°C` on the top edge :math:`Y=L/2` :math:`T=–100°C` on the bottom edge :math:`Y=–L/2` zero flow on the axis of symmetry, on the free edge :math:`X=W/2` and on the edge of the crack * full model :math:`T=100°C` on the top edge :math:`Y=L/2` :math:`T=–100°C` on the bottom edge :math:`Y=–L/2` zero flux on free edges :math:`X=\pm W/2` and on the edge of the crack