2. Benchmark solution#

2.1. Modeling A#

2.1.1. Benchmark results#

For the following displacement \(x\), it is given by the « normal » part of the discretes in parallel, which gives:

\({F}_{x}={K}_{\mathit{el}}{u}_{x}+{K}_{n}({u}_{x}+{\mathit{DIST}}_{1})\) if \({u}_{x}<-{\mathit{DIST}}_{1}\),

\({F}_{x}={K}_{\mathit{el}}{u}_{x}\) otherwise.

We get:

Time

\({u}_{x}\)

0.5

-0.5

1.0

-0.75

2.0

-0.75

Table 2.1.1-a: Reference Solution

For the following displacement y, it is given by the « tangential » part of the discretes in parallel, which gives:

\(\begin{array}{c}{F}_{y}={k}_{t}\left({u}_{y}-{\delta }_{y}^{0}\right)+{k}_{\mathit{el}}{u}_{y}\\ \delta ={\delta }^{0}\end{array}\) if \(∣{k}_{t}∣\left({u}_{y}-{\delta }^{0}\right)\le \mu ∣{F}_{x}∣\),

\(\begin{array}{c}{F}_{y}=\mu ∣{F}_{x}∣\mathit{sgn}\left({u}_{y}-{\delta }^{0}\right)+{k}_{\mathit{el}}{u}_{y}\\ \delta =u-\mathit{sgn}({u}_{y}-{\delta }^{0})\mu {K}_{n}({u}_{x}+{\mathit{DIST}}_{1})/{K}_{t}\end{array}\) otherwise.

We noted the « sign » function \(\mathit{sgn}\).

We get:

Time

\({u}_{y}\)

1.05

0.1333333

1.50

1.875

1.55

1.74166666

2.00

0.125

Table 2.1.1-b: Reference Solution

2.1.2. Uncertainty about the solution#

No uncertainty (analytical solution).

2.2. B & C models#

2.2.1. Benchmark results#

2.2.1.1. Charging paths 1 and 3#

The formulas are identical to those of modeling A, with the characteristics of the discretes derived from the materials used for the B and C models.

For moments \([\mathrm{1.5,}\mathrm{3.5,}4.0]\) the normal effort in the discreet is

\({N}_{1}=\mathit{RIGI}\underline{\phantom{\rule{2em}{0ex}}}\mathit{NOR}\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}\mathit{Ux}=10000.0\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}1.0\)

For moments \([\mathrm{9.0,}\mathrm{10.0,}11.0]\) the normal effort in the discreet is

\({N}_{2}=\mathit{RIGI}\underline{\phantom{\rule{2em}{0ex}}}\mathit{NOR}\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}\mathit{Ux}=10000.0\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}2.0\)

This gives, with a coefficient of friction of \(0.3\)

\({\mathit{Seuil}}_{1}=\frac{0.3{N}_{1}}{\sqrt{2}},{\mathit{Seuil}}_{2}=\frac{0.3{N}_{2}}{\sqrt{2}}\)

INST

N

VY

VZ

1.50

-10000.0

-Threshold 1

-Threshold 1

-Threshold 1

3.50

-10000.0

Threshold 1

Threshold 1

4.00

-10000.0

Threshold 1

Threshold 1

6.00

0.0

0.0

0.0

9.00

-20000.0

0.0

0.0

10.00

-20000.0

-Threshold 2

-Threshold 2

11.00

-20000.0

-Threshold 2

-Threshold 2

Table 2.2.1.1-a: Reference solution, B and C models, paths 1 and 3

_images/1000020100000940000005DA07D6A23FBF2AB11C.png

Figure 2.2.1.1-a :: Discreet efforts as a function of time . **

2.2.1.2. Charging path 2#

The forces in the tangential plane are verified for several angles:

\([\mathrm{0,30,45,60,90,120,135,150,180,210,225,240,270,300,315,330,360}]\)

The forces in the tangential plane are given by the following expressions:

\({V}_{Y}=\text{RIGI\_NOR}\phantom{\rule{2em}{0ex}}.{D}_{x}\mathrm{\mu }\mathrm{sin}(\mathit{Angle})\)

\({V}_{z}=\text{RIGI\_NOR}\phantom{\rule{2em}{0ex}}.{D}_{x}\mathrm{\mu }\mathrm{cos}(\mathit{Angle})\)

_images/1000020100000A54000005E8D53508B1176A96D8.png

Figure 2.2.1.2-a :: Discreet efforts as a function of time . **

2.2.2. Uncertainty about solutions#

No uncertainty (analytical solutions).