Benchmark solution ===================== Modeling A -------------- Benchmark results ~~~~~~~~~~~~~~~~~~~~~~~~ For the following displacement :math:`x`, it is given by the "normal" part of the discretes in parallel, which gives: :math:`{F}_{x}={K}_{\mathit{el}}{u}_{x}+{K}_{n}({u}_{x}+{\mathit{DIST}}_{1})` if :math:`{u}_{x}<-{\mathit{DIST}}_{1}`, :math:`{F}_{x}={K}_{\mathit{el}}{u}_{x}` otherwise. We get: .. csv-table:: "**Time**", ":math:`{u}_{x}`" "0.5", "-0.5" "1.0", "-0.75" "2.0", "-0.75" Table 2.1.1-a: Reference Solution For the following displacement y, it is given by the "tangential" part of the discretes in parallel, which gives: :math:`\begin{array}{c}{F}_{y}={k}_{t}\left({u}_{y}-{\delta }_{y}^{0}\right)+{k}_{\mathit{el}}{u}_{y}\\ \delta ={\delta }^{0}\end{array}` if :math:`∣{k}_{t}∣\left({u}_{y}-{\delta }^{0}\right)\le \mu ∣{F}_{x}∣`, :math:`\begin{array}{c}{F}_{y}=\mu ∣{F}_{x}∣\mathit{sgn}\left({u}_{y}-{\delta }^{0}\right)+{k}_{\mathit{el}}{u}_{y}\\ \delta =u-\mathit{sgn}({u}_{y}-{\delta }^{0})\mu {K}_{n}({u}_{x}+{\mathit{DIST}}_{1})/{K}_{t}\end{array}` otherwise. We noted the "sign" function :math:`\mathit{sgn}`. We get: .. csv-table:: "**Time**", ":math:`{u}_{y}`" "1.05", "0.1333333" "1.50", "1.875" "1.55", "1.74166666" "2.00", "0.125" Table 2.1.1-b: Reference Solution Uncertainty about the solution ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ No uncertainty (analytical solution). B & C models ------------------- Benchmark results ~~~~~~~~~~~~~~~~~~~~~~~~ Charging paths 1 and 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The formulas are identical to those of modeling A, with the characteristics of the discretes derived from the materials used for the B and C models. For moments :math:`[\mathrm{1.5,}\mathrm{3.5,}4.0]` the normal effort in the discreet is :math:`{N}_{1}=\mathit{RIGI}\underline{\phantom{\rule{2em}{0ex}}}\mathit{NOR}\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}\mathit{Ux}=10000.0\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}1.0` For moments :math:`[\mathrm{9.0,}\mathrm{10.0,}11.0]` the normal effort in the discreet is :math:`{N}_{2}=\mathit{RIGI}\underline{\phantom{\rule{2em}{0ex}}}\mathit{NOR}\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}\mathit{Ux}=10000.0\phantom{\rule{2em}{0ex}}\mathrm{.}\phantom{\rule{2em}{0ex}}2.0` This gives, with a coefficient of friction of :math:`0.3` :math:`{\mathit{Seuil}}_{1}=\frac{0.3{N}_{1}}{\sqrt{2}},{\mathit{Seuil}}_{2}=\frac{0.3{N}_{2}}{\sqrt{2}}` .. csv-table:: "**INST**", "**N**", "**VY**", "**VZ**" "**1.50**", "-10000.0", "-Threshold 1", "-Threshold 1", "-Threshold 1" "**3.50**", "-10000.0", "Threshold 1", "Threshold 1" "**4.00**", "-10000.0", "Threshold 1", "Threshold 1" "**6.00**", "0.0", "0.0", "0.0" "**9.00**", "-20000.0", "0.0", "0.0" "**10.00**", "-20000.0", "-Threshold 2", "-Threshold 2" "**11.00**", "-20000.0", "-Threshold 2", "-Threshold 2" Table 2.2.1.1-a: Reference solution, B and C models, paths 1 and 3 .. image:: images/1000020100000940000005DA07D6A23FBF2AB11C.png :width: 5.9047in :height: 3.2819in .. _RefImage_1000020100000940000005DA07D6A23FBF2AB11C.png: **Figure** 2.2.1.1-a **:**: **Discreet efforts as a function of time** . ** Charging path 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^ The forces in the tangential plane are verified for several angles: :math:`[\mathrm{0,30,45,60,90,120,135,150,180,210,225,240,270,300,315,330,360}]` The forces in the tangential plane are given by the following expressions: :math:`{V}_{Y}=\text{RIGI\_NOR}\phantom{\rule{2em}{0ex}}.{D}_{x}\mathrm{\mu }\mathrm{sin}(\mathit{Angle})` :math:`{V}_{z}=\text{RIGI\_NOR}\phantom{\rule{2em}{0ex}}.{D}_{x}\mathrm{\mu }\mathrm{cos}(\mathit{Angle})` .. image:: images/1000020100000A54000005E8D53508B1176A96D8.png :width: 5.8701in :height: 3.2535in .. _RefImage_1000020100000A54000005E8D53508B1176A96D8.png: **Figure** 2.2.1.2-a **:**: **Discreet efforts as a function of time** . ** Uncertainty about solutions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ No uncertainty (analytical solutions).