1. Reference problem#

1.1. Plate geometry#

_images/Object_1.svg _images/Object_2.svg

1.2. Characteristics of the models#

This test case is composed of 8 models. The table below summarizes their characteristics:

  1. Orientation of the frames: longitudinal direction \((L)\): \(\mathrm{OX}\); transverse direction \((T)\): \(\mathrm{OY}\)

  2. Eccentricity = \(0m\)

  3. Section per linear meter = \(\mathrm{0,01}{m}^{2}/\mathrm{ml}\) (same thickness in the transverse and longitudinal directions in case of presence of transverse reinforcements)

Modeling

Law of behavior

Presence of frame transversal

Temperature application mode

A

linear isotropic

Yes

at the nodes

B

linear kinematics

Yes

at the nodes

C

Pinto Menegotto

Yes

At the knots

D

Pinto Menegotto

Yes

to the elements

E

Pinto Menegotto

No

to the elements

F

linear isotropic

No

at the nodes

G

linear kinematics

No

at the nodes

H

Pinto Menegotto

No

***

*** For test case H, temperature loading is replaced by mechanical loading (displacement imposed on the nodes).

1.3. Material properties#

1.3.1. Properties common to all models#

Young’s module:

\(E={2.10}^{11}\mathrm{MPa}\)

Poisson’s ratio:

\(\nu =0\)

Elastic limit:

\({\sigma }_{y}={2.10}^{8}\mathrm{MPa}\)

Coefficient of thermal expansion: \(\alpha ={10}^{-5}(°{C}^{-1})\)

1.3.2. Isotropic and kinematic plastic behavior#

For isotropic (GRILLE_ISOT_LINE) and kinematic (GRILLE_CINE_LINE) behaviors

Work hardening slope: \({E}_{T}={2.10}^{10}\mathrm{MPa}\)

1.3.3. Pinto Menegotto’s behavior#

For the PINTO MENEGOTTO (GRILLE_PINTO_MEN) behavior

EPSI_ULTM

:

3.0. 10—2

SIGM_ULTM

:

2.58. 108

EPSP_HARD

:

0.0023

R_PM

:

20,0

EP_SUR_E

:

0.01

A1_PM

:

18.5

A2_PM

:

0.15

ELAN

:

4.9

A6_PM

:

620.0

C_PM

:

0.5

A_PM

:

0.008

1.4. Boundary conditions and loading#

The plate is fully embedded for models A to G (thermo-mechanical). For H modeling (mechanical), we block all the movements and all the rotations at the nodes except \(\mathrm{UX}\) for the nodes \(\mathrm{NO2}\) and \(\mathrm{NO3}\).

The loading is of thermal origin for models A to G. The evolution of the temperature as a function of time is given for each model in the following table. The temperature is applied to the nodes or to the elements, depending on the modeling.

Instant

Evolution \(A\) \(T°\)

Evolution \(B\) \(T°\)

Evolution \(C\) \(T°\)

0

50

50

50

1

—50

—50

—300

2

—250

—250

—100

3

—150

—150

50

4

—250

—250

—150

5

—50

—50

—350

6

350

350

350

—200

7

50

150

8

—450

—450

9

—110

—250

10

550

650

11

50

450

_images/1000297C000069D5000041D6CB32AC64A91ED196.svg

For all tests, a reference temperature of \(50°\) was taken.

For the H modeling, a nodal force \(\mathrm{FX}\) is applied to the nodes \(\mathrm{NO2}\) and \(\mathrm{NO3}\) (directed according to the vector \(\mathrm{UX}\)) by driving the calculation by the displacement \(\mathrm{UX}\) of \(\mathrm{NO3}\) so that it follows the following evolution:

Instant

0.001

0.0023

0.0023

0.03

0.2

0.4

6.4

7.92

\(\mathit{Ux}\) (\(m\))

0.001

0.0023

0.0023

0.03

0.0296667

0.02

-0.04

-0.033

Instant

17

19

19

20

20

21

22

25

50

\(\mathit{Ux}\) (\(m\))

0.01

0.03

0.03

0.0298

0.026

0.022

0.025

0.05