2. Analytical solution#
First, let’s introduce the following notations:
With \(K=\frac{E}{3\left(1-2\mathrm{\nu }\right)}\) and \(G=\frac{E}{2\left(1+\mathrm{\nu }\right)}\) the compressibility and shear modules, respectively.
Let \(C\) be the Hooke elasticity tensor, we will have with hypothesis \({\mathrm{ϵ}}_{\mathit{yy}}={\mathrm{ϵ}}_{\mathit{xx}}\):
To simplify, we note the vertical constraint at the time \(\text{+}\) \({\mathrm{\sigma }}^{\text{+}}={\mathrm{\sigma }}_{\mathit{zz}}^{\text{+}}\), so that the Rankine criterion is written:
In addition, we have:
: label: eq-4
{begin {array} {c} {mathrm {sigma}}} ^ {text {pred}} = {mathrm {sigma}} ^ {text {-}} +nmathrm {.} +nmathrm {.}.} Cmathrm {.}} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {.} dmathrm {sigma}} ^ {text {-}} +nmathrm {.} Cmathrm {.} left (dmathrm {}} -dmathrm {lambda} nright) = {mathrm {sigma}} ^ {text {pred}} -underset {mathrm {thrm {delta}} {delta}} {mathrm {sigma}} {mathrm {sigma}}} _ {sigma}}} {underset {} {dmathrm {lambda}} nmathrm {delta}} {mathrm {delta}} {mathrm {sigma}}} _ {sigma}} _ {sigma}}} {underset {}} {dmathrm {lambda}} nmathrm {delta}} {.} Cmathrm {.} n}}}end {array}
With \(n=\left(\begin{array}{c}0\\ 0\\ 1\end{array}\right)\) and where:
: label: eq-5
dmathrm {lambda} =frac {{⟶ {mathrm {sigma}}} ^ {mathit {pred}} - {mathrm {sigma}}} - {sigma}} _ {t} ⟩} __ {t} ⟩}
According to the associated flow law, we also have:
Like \(n=\left(\begin{array}{c}0\\ 0\\ 1\end{array}\right)\), we get:
Combining equations (), (), and () gives us constraint \({\mathrm{\sigma }}_{\mathit{zz}}^{\text{+}}\). Equations () and () give us the norm of deviatoric plastic deformation \({e}^{P}\).
Now let’s try to get the expression for horizontal elastic deformation \({\mathrm{ϵ}}_{\mathit{xx}}^{\text{élas}}\).
Laterally, we have condition \({\mathrm{\sigma }}_{\mathit{xx}}^{\text{+}}={P}_{0}\), which is:
With \(\mathrm{\Delta }{\mathrm{\sigma }}_{\mathit{xx},C}=d\mathrm{\lambda }B\)
Using equation (), we then obtain:
Hence the horizontal elastic deformation increment: