4. B modeling#

4.1. Characteristics of modeling#

Modeling \(B\) is three-dimensional and static linear (3D). Its purpose is to test the orthotropy of Hujeux’s law. The following mechanical properties are used:

Elastic parameters

Humid parameters (modified compared to §1.2)

\({E}_{\mathrm{xx}}\)

\(62000\mathrm{MPa}\)

\(n\)

\(0\)

\({E}_{\mathrm{yy}}\)

\(31000\mathrm{MPa}\)

\(d\)

\(100\)

\({E}_{\mathrm{zz}}\)

\(620\mathrm{MPa}\)

\(b\)

\(\mathrm{0,1}\)

\({\upsilon }_{\mathrm{xx}}={\upsilon }_{\mathrm{yy}}={\upsilon }_{\mathrm{zz}}\)

\(\mathrm{0,3}\)

\({r}_{\mathrm{ela}}^{I}={r}_{\mathrm{ela}}^{D}\)

\(1\)

\({G}_{\mathrm{xx}}\)

\(11910\mathrm{MPa}\)

\({G}_{\mathrm{yy}}\)

\(23820\mathrm{MPa}\)

\({G}_{\mathrm{zz}}\)

\(\mathrm{238,2}\mathrm{MPa}\)

Isotropic compression of the sample is carried out up to \({p}_{f}=-300\mathrm{kPa}\) in \(101\) (time step between \(t=-10\) and \(t=0\)).

4.2. Tested sizes and results#

The solutions are calculated at point \(C\) and compared to a true orthotropic linear elastic calculation performed with Code_Aster. They are given in terms of longitudinal \({\epsilon }_{\mathrm{xx}}\) and transverse \({\epsilon }_{\mathrm{yy}}\) deformations, and summarized in the following tables:

\({ϵ}_{\mathit{xx}}\)

\({\epsilon }_{\mathrm{zz}}\)

Reference type

Reference value

Tolerance (%)

-6.40E-5

AUTRE_ASTER

-2.580E-7

1.0

-1.28E-4

AUTRE_ASTER

-5.170E-7

1.0

-1.92E-4

AUTRE_ASTER

-7.750E-7

1.0

-2.56E-4

AUTRE_ASTER

-1.033E-6

1.0

-3.20E-4

AUTRE_ASTER

-1.291E-6

1.0

\({ϵ}_{\mathit{yy}}\)

\({\epsilon }_{\mathrm{zz}}\)

Reference type

Reference value

Tolerance (%)

-6.40E-5

AUTRE_ASTER

-7.10E-7

1.0

-1.28E-4

AUTRE_ASTER

-1.42E-6

1.0

-1.92E-4

AUTRE_ASTER

-2.13E-6

1.0

-2.56E-4

AUTRE_ASTER

-2.84E-6

1.0

-3.20E-4

AUTRE_ASTER

-3.55E-6

1.0

4.3. notes#

The difference between the two simulations, which model the same behavior, is very small.