4. B modeling#
4.1. Characteristics of modeling#
Modeling \(B\) is three-dimensional and static linear (3D). Its purpose is to test the orthotropy of Hujeux’s law. The following mechanical properties are used:
Elastic parameters |
Humid parameters (modified compared to §1.2) |
||
\({E}_{\mathrm{xx}}\) |
\(62000\mathrm{MPa}\) |
\(n\) |
\(0\) |
\({E}_{\mathrm{yy}}\) |
\(31000\mathrm{MPa}\) |
\(d\) |
\(100\) |
\({E}_{\mathrm{zz}}\) |
\(620\mathrm{MPa}\) |
\(b\) |
\(\mathrm{0,1}\) |
\({\upsilon }_{\mathrm{xx}}={\upsilon }_{\mathrm{yy}}={\upsilon }_{\mathrm{zz}}\) |
\(\mathrm{0,3}\) |
\({r}_{\mathrm{ela}}^{I}={r}_{\mathrm{ela}}^{D}\) |
\(1\) |
\({G}_{\mathrm{xx}}\) |
\(11910\mathrm{MPa}\) |
||
\({G}_{\mathrm{yy}}\) |
\(23820\mathrm{MPa}\) |
||
\({G}_{\mathrm{zz}}\) |
\(\mathrm{238,2}\mathrm{MPa}\) |
Isotropic compression of the sample is carried out up to \({p}_{f}=-300\mathrm{kPa}\) in \(101\) (time step between \(t=-10\) and \(t=0\)).
4.2. Tested sizes and results#
The solutions are calculated at point \(C\) and compared to a true orthotropic linear elastic calculation performed with Code_Aster. They are given in terms of longitudinal \({\epsilon }_{\mathrm{xx}}\) and transverse \({\epsilon }_{\mathrm{yy}}\) deformations, and summarized in the following tables:
\({ϵ}_{\mathit{xx}}\)
\({\epsilon }_{\mathrm{zz}}\) |
Reference type |
Reference value |
Tolerance (%) |
-6.40E-5 |
|
-2.580E-7 |
1.0 |
-1.28E-4 |
|
-5.170E-7 |
1.0 |
-1.92E-4 |
|
-7.750E-7 |
1.0 |
-2.56E-4 |
|
-1.033E-6 |
1.0 |
-3.20E-4 |
|
-1.291E-6 |
1.0 |
\({ϵ}_{\mathit{yy}}\)
\({\epsilon }_{\mathrm{zz}}\) |
Reference type |
Reference value |
Tolerance (%) |
-6.40E-5 |
|
-7.10E-7 |
1.0 |
-1.28E-4 |
|
-1.42E-6 |
1.0 |
-1.92E-4 |
|
-2.13E-6 |
1.0 |
-2.56E-4 |
|
-2.84E-6 |
1.0 |
-3.20E-4 |
|
-3.55E-6 |
1.0 |
4.3. notes#
The difference between the two simulations, which model the same behavior, is very small.