B modeling ============== Characteristics of modeling ----------------------------------- Modeling :math:`B` is three-dimensional and static linear (3D). Its purpose is to test the orthotropy of Hujeux's law. The following mechanical properties are used: +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |Elastic parameters |Humid parameters (modified compared to §1.2) | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{E}_{\mathrm{xx}}` |:math:`62000\mathrm{MPa}` |:math:`n` |:math:`0` | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{E}_{\mathrm{yy}}` |:math:`31000\mathrm{MPa}` |:math:`d` |:math:`100` | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{E}_{\mathrm{zz}}` |:math:`620\mathrm{MPa}` |:math:`b` |:math:`\mathrm{0,1}`| +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{\upsilon }_{\mathrm{xx}}={\upsilon }_{\mathrm{yy}}={\upsilon }_{\mathrm{zz}}`|:math:`\mathrm{0,3}` |:math:`{r}_{\mathrm{ela}}^{I}={r}_{\mathrm{ela}}^{D}`|:math:`1` | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{G}_{\mathrm{xx}}` |:math:`11910\mathrm{MPa}` | | | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{G}_{\mathrm{yy}}` |:math:`23820\mathrm{MPa}` | | | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ |:math:`{G}_{\mathrm{zz}}` |:math:`\mathrm{238,2}\mathrm{MPa}`| | | +-------------------------------------------------------------------------------------+----------------------------------+-----------------------------------------------------+--------------------+ Isotropic compression of the sample is carried out up to :math:`{p}_{f}=-300\mathrm{kPa}` in :math:`101` (time step between :math:`t=-10` and :math:`t=0`). Tested sizes and results ------------------------------ The solutions are calculated at point :math:`C` and compared to a true orthotropic linear elastic calculation performed with *Code_Aster*. They are given in terms of longitudinal :math:`{\epsilon }_{\mathrm{xx}}` and transverse :math:`{\epsilon }_{\mathrm{yy}}` deformations, and summarized in the following tables: :math:`{ϵ}_{\mathit{xx}}` .. csv-table:: ":math:`{\epsilon }_{\mathrm{zz}}` ", "**Reference type**", "**Reference value**", "**Tolerance (%)**" "-6.40E-5"," AUTRE_ASTER ", "-2.580E-7", "1.0" "-1.28E-4"," AUTRE_ASTER ", "-5.170E-7", "1.0" "-1.92E-4"," AUTRE_ASTER ", "-7.750E-7", "1.0" "-2.56E-4"," AUTRE_ASTER ", "-1.033E-6", "1.0" "-3.20E-4"," AUTRE_ASTER ", "-1.291E-6", "1.0" :math:`{ϵ}_{\mathit{yy}}` .. csv-table:: ":math:`{\epsilon }_{\mathrm{zz}}` ", "**Reference type**", "**Reference value**", "**Tolerance (%)**" "-6.40E-5"," AUTRE_ASTER ", "-7.10E-7", "1.0" "-1.28E-4"," AUTRE_ASTER ", "-1.42E-6", "1.0" "-1.92E-4"," AUTRE_ASTER ", "-2.13E-6", "1.0" "-2.56E-4"," AUTRE_ASTER ", "-2.84E-6", "1.0" "-3.20E-4"," AUTRE_ASTER ", "-3.55E-6", "1.0" notes --------- The difference between the two simulations, which model the same behavior, is very small.