1. Reference problem#

1.1. Geometry#

height: \(h\mathrm{=}1m\)

width: \(l\mathrm{=}1m\)

thickness: \(e\mathrm{=}1m\)

_images/10002036000069D500005C16A5BE55D5E490B680.svg

Coordinates of points (in meters):

\(A\)

\(B\)

\(C\)

\(D\)

\(x\)

\(y\)

0.86602540378445

0.86602540378445

\(z\)

—0.5

—0.5

1.2. Property of materials#

\(E\mathrm{=}\mathrm{35,6616541}{10}^{3}\mathit{kPa}\)

\(\nu \mathrm{=}\mathrm{0,15037594}\)

Settings CJS2:

\(\beta \mathrm{=}\mathrm{-}\mathrm{0,55}\)

\(\gamma \mathrm{=}\mathrm{0,82}\)

\({R}_{m}\mathrm{=}\mathrm{0,289}\)

\({R}_{c}\mathrm{=}\mathrm{0,265}\)

\(n\mathrm{=}\mathrm{0,6}\)

\({K}_{o}^{p}\mathrm{=}\mathrm{25,5}{10}^{3}\mathit{kPa}\)

\(A\mathrm{=}0.25\mathit{kPa}\)

\({P}_{a}\mathrm{=}\mathrm{-}100\mathit{kPa}\)

1.3. Initial conditions, boundary conditions, and loading#

Phase 1:

The sample is brought to a homogeneous state, by imposing the corresponding confinement pressure on faces \(\mathit{EFGH}\), \(\mathit{CDHG}\) and \(\mathit{BCGF}\). Normal movements are blocked on sides ABCD, \(\mathit{ADHE}\), and \(\mathit{ABFE}\).

Phase 2:

We maintain normal movements blocked on faces \(\mathit{ABCD}\), \(\mathit{ADHE}\) and \(\mathit{ABFE}\); as well as the pressure of confinement on faces \(\mathit{CDHG}\) and \(\mathit{BCGF}\). A normal displacement imposed on the face \(\mathit{EFGH}\) is applied, so as to obtain a deformation in the normal direction equal to — \(\text{20\%}\) (counted from the start of phase 2).