Reference problem ===================== Geometry --------- height: :math:`h\mathrm{=}1m` width: :math:`l\mathrm{=}1m` thickness: :math:`e\mathrm{=}1m` .. image:: images/10002036000069D500005C16A5BE55D5E490B680.svg :width: 376 :height: 327 .. _RefImage_10002036000069D500005C16A5BE55D5E490B680.svg: Coordinates of points (in meters): .. csv-table:: "", ":math:`A` "," :math:`B` "," :math:`C` "," :math:`D`" ":math:`x` ", "0. ", "0. ", "1. ", "1." ":math:`y` ", "0. ", "0.86602540378445", "0.86602540378445", "0." ":math:`z` ", "0. ", "—0.5", "—0.5", "0." Property of materials ---------------------- :math:`E\mathrm{=}\mathrm{35,6616541}{10}^{3}\mathit{kPa}` :math:`\nu \mathrm{=}\mathrm{0,15037594}` .. csv-table:: "Settings CJS2:", ":math:`\beta \mathrm{=}\mathrm{-}\mathrm{0,55}` "," :math:`\gamma \mathrm{=}\mathrm{0,82}` "," "," :math:`{R}_{m}\mathrm{=}\mathrm{0,289}` "," :math:`{R}_{c}\mathrm{=}\mathrm{0,265}` "," :math:`n\mathrm{=}\mathrm{0,6}`" "", ":math:`{K}_{o}^{p}\mathrm{=}\mathrm{25,5}{10}^{3}\mathit{kPa}` ", "", ":math:`A\mathrm{=}0.25\mathit{kPa}` "," "," :math:`{P}_{a}\mathrm{=}\mathrm{-}100\mathit{kPa}` ", "" Initial conditions, boundary conditions, and loading ---------------------------------------- **Phase 1:** The sample is brought to a homogeneous state, by imposing the corresponding confinement pressure on faces :math:`\mathit{EFGH}`, :math:`\mathit{CDHG}` and :math:`\mathit{BCGF}`. Normal movements are blocked on sides ABCD, :math:`\mathit{ADHE}`, and :math:`\mathit{ABFE}`. **Phase 2:** We maintain normal movements blocked on faces :math:`\mathit{ABCD}`, :math:`\mathit{ADHE}` and :math:`\mathit{ABFE}`; as well as the pressure of confinement on faces :math:`\mathit{CDHG}` and :math:`\mathit{BCGF}`. A normal displacement imposed on the face :math:`\mathit{EFGH}` is applied, so as to obtain a deformation in the normal direction equal to — :math:`\text{20\%}` (counted from the start of phase 2).