2. Benchmark solutions#
2.1. Calculation method#
In simple traction and with the hypothesis of small deformations, the tensile stress
as well as the plastic multiplier
Just now
are given in the case under consideration by:
yes
: \(\mathrm{\sigma }(u)=E\frac{l(u)-{L}_{0}}{{L}_{0}}\), \(\dot{p}(u)=0\), \(l({t}_{1}^{p})={L}_{0}(1+\frac{{\mathrm{\sigma }}_{Y}(-50°C)}{E})\)
yes
: \(\mathrm{\sigma }(u)={E}_{t}\frac{l(u)-{L}_{0}}{{L}_{0}}+\frac{E-{E}_{t}}{E}{\mathrm{\sigma }}_{Y}(-50°C)\), \(\dot{p}(u)=(1-\frac{{E}_{t}}{E})\frac{\dot{l}(u)}{{L}_{0}}\)
yes
: \(\mathrm{\sigma }(u)=\mathrm{\sigma }(u=10)-E\frac{l(u=10)-l(u)}{{L}_{0}}\), \(\dot{p}(u)=0\)
yes
: \(\mathrm{\sigma }(u)=\mathrm{\sigma }(u=20)\), \(\dot{p}(u)=0\)
yes
: \(\mathrm{\sigma }(u)=\mathrm{\sigma }(u=20)+{E}_{t}\frac{l(u)-l(u=20)}{{L}_{0}}\), \(\dot{p}(u)=(1-\frac{{E}_{t}}{E})\frac{\dot{l}(u)}{{L}_{0}}\)
2.2. Weibull#
The cumulative probability of breakage
Just now
is given by (cf. POST_ELEM and POST_BEREMIN):
\({P}_{f}(t)=1-\mathrm{exp}(-\sum _{\mathit{dV}}{[\begin{array}{c}\mathit{max}\\ {t}^{p}\le u\le t\end{array}(\frac{{\mathrm{\sigma }}_{I}(u)}{{\mathrm{\sigma }}_{u}(\mathrm{\theta }(u))})]}^{m}\frac{\mathit{dV}}{{V}_{0}})\).
The summation relates to the volumes of matter.
laminated (from now on
),
and
designating the maximum principal stress and the temperature in each of these volumes at the various times
. Here, the volume
The reference value is equal to \(50\mu {m}^{3}\). The Weibull module
is equal to 24 while the cleavage stress
depends on the temperature according to:
Temperature \(\mathrm{[}°C\mathrm{]}\) |
—50 |
—100 |
—150 |
—150 |
\({\sigma }_{u}\mathrm{[}\mathit{MPa}\mathrm{]}\) |
2800 |
2700 |
2600 |
The cumulative probability of breakage varies according to (
) according to:
\({P}_{f}(t)=1-\mathrm{exp}(-{[\begin{array}{c}\mathit{max}\\ {t}^{p}\le u\le t\end{array}(\frac{\mathrm{\sigma }(u)}{{\mathrm{\sigma }}_{u}(\mathrm{\theta }(u))})]}^{m}\frac{V}{{V}_{0}})\).
2.3. Rice and Tracey#
In simple traction, the natural logarithm of the cavity growth rate at the moment
is given by (cf. POST_ELEM):
\(\mathrm{log}(\frac{R(t)}{{R}_{0}})=0.283\times \mathrm{exp}(0.5)\times \underset{0}{\overset{t}{\int }}\dot{p}(u)\mathit{du}\)
2.4. Reference quantities and results#
and
for the following couples (temperature, travel = \((l\mathrm{-}{l}_{0})\)): \((–\mathrm{50,0}°C,\mathrm{20,35}\mathit{mm})\);
\((–\mathrm{50,0}°C,\mathrm{20,30}\mathit{mm})\); \((–\mathrm{150,0}°C,\mathrm{20,30}\mathit{mm})\) and \((–\mathrm{150,0}°C,\mathrm{32,53}\mathit{mm})\).
2.5. Uncertainties about the solution#
Analytical solution.