Benchmark solutions ====================== Calculation method ----------------- In simple traction and with the hypothesis of small deformations, the tensile stress .. image:: images/Object_4.svg :width: 36 :height: 21 .. _RefImage_Object_4.svg: as well as the plastic multiplier .. image:: images/Object_5.svg :width: 36 :height: 21 .. _RefImage_Object_5.svg: Just now .. image:: images/Object_6.svg :width: 36 :height: 21 .. _RefImage_Object_6.svg: are given in the case under consideration by: * yes .. image:: images/Object_7.svg :width: 36 :height: 21 .. _RefImage_Object_7.svg: : :math:`\mathrm{\sigma }(u)=E\frac{l(u)-{L}_{0}}{{L}_{0}}`, :math:`\dot{p}(u)=0`, :math:`l({t}_{1}^{p})={L}_{0}(1+\frac{{\mathrm{\sigma }}_{Y}(-50°C)}{E})` * yes .. image:: images/Object_9.svg :width: 36 :height: 21 .. _RefImage_Object_9.svg: : :math:`\mathrm{\sigma }(u)={E}_{t}\frac{l(u)-{L}_{0}}{{L}_{0}}+\frac{E-{E}_{t}}{E}{\mathrm{\sigma }}_{Y}(-50°C)`, :math:`\dot{p}(u)=(1-\frac{{E}_{t}}{E})\frac{\dot{l}(u)}{{L}_{0}}` * yes .. image:: images/Object_11.svg :width: 36 :height: 21 .. _RefImage_Object_11.svg: : :math:`\mathrm{\sigma }(u)=\mathrm{\sigma }(u=10)-E\frac{l(u=10)-l(u)}{{L}_{0}}`, :math:`\dot{p}(u)=0` * yes .. image:: images/Object_13.svg :width: 36 :height: 21 .. _RefImage_Object_13.svg: : :math:`\mathrm{\sigma }(u)=\mathrm{\sigma }(u=20)`, :math:`\dot{p}(u)=0` * yes .. image:: images/Object_15.svg :width: 36 :height: 21 .. _RefImage_Object_15.svg: : :math:`\mathrm{\sigma }(u)=\mathrm{\sigma }(u=20)+{E}_{t}\frac{l(u)-l(u=20)}{{L}_{0}}`, :math:`\dot{p}(u)=(1-\frac{{E}_{t}}{E})\frac{\dot{l}(u)}{{L}_{0}}` Weibull ------- The cumulative probability of breakage .. image:: images/Object_17.svg :width: 36 :height: 21 .. _RefImage_Object_17.svg: Just now .. image:: images/Object_18.svg :width: 36 :height: 21 .. _RefImage_Object_18.svg: is given by (cf. POST_ELEM and POST_BEREMIN): :math:`{P}_{f}(t)=1-\mathrm{exp}(-\sum _{\mathit{dV}}{[\begin{array}{c}\mathit{max}\\ {t}^{p}\le u\le t\end{array}(\frac{{\mathrm{\sigma }}_{I}(u)}{{\mathrm{\sigma }}_{u}(\mathrm{\theta }(u))})]}^{m}\frac{\mathit{dV}}{{V}_{0}})`. The summation relates to the volumes of matter. .. image:: images/Object_20.svg :width: 36 :height: 21 .. _RefImage_Object_20.svg: laminated (from now on .. image:: images/Object_21.svg :width: 36 :height: 21 .. _RefImage_Object_21.svg: ), .. image:: images/Object_22.svg :width: 36 :height: 21 .. _RefImage_Object_22.svg: and .. image:: images/Object_23.svg :width: 36 :height: 21 .. _RefImage_Object_23.svg: designating the maximum principal stress and the temperature in each of these volumes at the various times .. image:: images/Object_24.svg :width: 36 :height: 21 .. _RefImage_Object_24.svg: . Here, the volume .. image:: images/Object_25.svg :width: 36 :height: 21 .. _RefImage_Object_25.svg: The reference value is equal to :math:`50\mu {m}^{3}`. The Weibull module .. image:: images/Object_26.svg :width: 36 :height: 21 .. _RefImage_Object_26.svg: is equal to 24 while the cleavage stress .. image:: images/Object_27.svg :width: 36 :height: 21 .. _RefImage_Object_27.svg: depends on the temperature according to: .. csv-table:: "**Temperature** :math:`\mathrm{[}°C\mathrm{]}` ", "**—50**", "**—100**", "**—150**", "**—150**" ":math:`{\sigma }_{u}\mathrm{[}\mathit{MPa}\mathrm{]}` ", "2800", "2700", "2600" The cumulative probability of breakage varies according to ( .. image:: images/Object_28.svg :width: 36 :height: 21 .. _RefImage_Object_28.svg: ) according to: :math:`{P}_{f}(t)=1-\mathrm{exp}(-{[\begin{array}{c}\mathit{max}\\ {t}^{p}\le u\le t\end{array}(\frac{\mathrm{\sigma }(u)}{{\mathrm{\sigma }}_{u}(\mathrm{\theta }(u))})]}^{m}\frac{V}{{V}_{0}})`. Rice and Tracey -------------- In simple traction, the natural logarithm of the cavity growth rate at the moment .. image:: images/Object_30.svg :width: 36 :height: 21 .. _RefImage_Object_30.svg: is given by (cf. POST_ELEM): :math:`\mathrm{log}(\frac{R(t)}{{R}_{0}})=0.283\times \mathrm{exp}(0.5)\times \underset{0}{\overset{t}{\int }}\dot{p}(u)\mathit{du}` Reference quantities and results ----------------------------------- .. image:: images/Object_32.svg :width: 36 :height: 21 .. _RefImage_Object_32.svg: and .. image:: images/Object_33.svg :width: 36 :height: 21 .. _RefImage_Object_33.svg: for the following couples (temperature, travel = :math:`(l\mathrm{-}{l}_{0})`): :math:`(–\mathrm{50,0}°C,\mathrm{20,35}\mathit{mm})`; :math:`(–\mathrm{50,0}°C,\mathrm{20,30}\mathit{mm})`; :math:`(–\mathrm{150,0}°C,\mathrm{20,30}\mathit{mm})` and :math:`(–\mathrm{150,0}°C,\mathrm{32,53}\mathit{mm})`. Uncertainties about the solution ---------------------------- Analytical solution.