1. Reference problem#

1.1. Geometry#

_images/10000000000006D00000045D038EA9C41E28FA82.png

The test piece in the shape of a diabolo, represented in (a), is fixed to the loading system (b) by six pins equivalent to joints.

The dimensions of the pieces are expressed in mm.

Test tube:

thickness \(B\) variable

\(\mathrm{6,36};\mathrm{6,39};\mathrm{6,44}\mathrm{mm}\)

overall width

\(98\mathrm{mm}\)

distance between pin axes

\(74\mathrm{mm}\)

width of the central part

\(6\mathrm{mm}\)

overall height

\(84\mathrm{mm}\)

distance between pin centers

\(31\mathrm{mm}\)

center height \(W\)

\(30\mathrm{mm}\)

crack length \(a\)

\(\mathrm{15,}18\) or \(21\mathrm{mm}\)

ligament \(b=W-a\)

\(\mathrm{15,}12\) or \(9\mathrm{mm}\)

pin hole diameter

\(8\mathrm{mm}\)

Test tube holder:

thickness

\(25\mathrm{mm}\)

outside diameter

\(190\mathrm{mm}\)

distance between the center of the room and the centers of the circular recesses

\(\mathrm{40,3}\mathrm{mm}\)

radius of the recesses

\(20\mathrm{mm}\)

diameter of the 2 holes where the loads are applied

\(10\mathrm{mm}\)

1.2. Material properties#

Test tube:

The material is elastoplastic, of the Von Mises type, with isotropic work hardening, defined by a uniaxial tension curve.

Young’s module: \(E=\mathrm{74,2}\mathrm{GPa}\)

Poisson’s ratio: \(\nu =\mathrm{0,32}\)

\(E\) tangent (\(\mathrm{GPa}\))

\(\sigma \) uniaxial) (\(\mathrm{MPa}\))

\({\varepsilon }_{T}\) uniaxial) (\(\text{\%}\))

72.74

334.6

0.46

50.69

410.7

0.61

15.00

431.6

0.75

4.75

443.5

1.00

1.82

480.0

3.00

0.80

500.1

5.50

0.0017

505.2

300.0

Test tube holder:

The material is isotropic linear elastic.

Young’s module: \(E=206\mathrm{GPa}\)

Poisson’s ratio: \(\nu =\mathrm{0,3}\)

1.3. Boundary conditions and loading#

_images/1000000000000610000006829FF771F8573396BC.png

The specimen holder has a fixed point \(\mathrm{UX}=\mathrm{UY}=0\) at the lower attachment hole and is subject to a vertical point loading applied to the variable upper attachment hole \(\mathrm{UX}=0\), \(\mathrm{FY}=P\).

For crack length \(a/W=\mathrm{0,5}\):

\(P\) varies from:

\(0N\) to \(11772N\) in 12 steps from \(981N\)

\(11772N\) to \(19620N\) in 16 steps from \(\mathrm{490,5}N\)

\(19620N\) to \(23544N\) in 20 steps from \(\mathrm{196,2}N\)

\(23544N\) to \(25114N\) in 16 steps from \(\mathrm{98,1}N\)