4. C modeling#

In this modeling, the extended finite element method (\(\text{X-FEM}\)) is used. A radius of geometric enrichment is defined with a number of element layers equal to 3.

4.1. Characteristics of the mesh#

The domain is meshed with linear triangles (mesh TRIA3). We maintain the refinement of the previous models, namely 100 quadrangles (divided into 2 triangles) along the \(X\) axis and 100 quadrangles (divided into 2 triangles) along the \(Y\) axis. The crack is not meshed.

_images/10000000000004590000040C9E5F3D85B588CA85.png

Figure 4.1-1 : mesh with triangles

4.2. Tested sizes and results#

The crack is inclined according to 3 angular values: \(\theta \mathrm{=}0°,30°,60°\)

For each angle of inclination, the stress intensity factors are tested as in models \(A\) and \(B\), by the \(G\mathrm{-}\mathit{thêta}\) method and by the method of extrapolation of displacement jumps.

For method \(G-\mathrm{thêta}\) (command CALC_G), the following theta field crowns are chosen: \({R}_{\mathrm{inf}}=\mathrm{0,1}a\) and \({R}_{\text{sup}}=\mathrm{0,3}a\).

4.2.1. Results for \(\theta \mathrm{=}0°\)#

Identification

Reference

Tolerance

CALC_G

C1 + background1: K1

2.5725 105

2.0%

C1 + background2: K1

2.5725 105

2.0%

C1 + background1: K2

0

257

C1 + background2: K2

0

257

C1 + background1: G

0.29

2.0%

C1 + background2: G

0.29

2.0%

C2 + background1: K1

2.5725 105

2.0%

C2 + background2: K1

2.5725 105

2.0%

C2 + background1: K2

0

257

C2 + background2: K2

0

257

C2 + background1: G

0.29

2.0%

C2 + background2: G

0.29

2.0%

POST_K1_K2_K3

C1 + background1: K1

2.5725 105

2.0%

C1 + background2: K1

2.5725 105

2.0%

C1 + background1: K2

0

514.5

C1 + background2: K2

0

514.5

C2 + background1: K1

2.5725 105

2.0%

C2 + background2: K1

2.5725 105

2.0%

C2 + background1: K2

0

514.5

C2 + background2: K2

0

514.5

The zero values of \({K}_{2}\) are tested in absolute terms with a tolerance equal to \({K}_{1}^{\mathit{ref}}\mathrm{/}1000\) for CALC_G and a tolerance equal to \({K}_{1}^{\mathit{ref}}\mathrm{/}500\) for POST_K1_K2_K3.

4.2.2. Results for \(\theta \mathrm{=}30°\)#

Identification

Reference

Tolerance

CALC_G

C1 + background1: K1

1.9294 105

2.0%

C1 + background2: K1

1.9294 105

2.0%

C1 + background1: K2

1.1139.105

3.0%

C1 + background2: K2

1.1139.105

3.0%

C1 + background1: G

0.215

2.0%

C1 + background2: G

0.215

2.0%

C2 + background1: K1

1.9294 105

2.0%

C2 + background2: K1

1.9294 105

2.0%

C2 + background1: K2

1.1139.105

3.0%

C2 + background2: K2

1.1139.105

3.0%

C2 + background1: G

0.215

2.0%

C2 + background2: G

0.215

2.0%

POST_K1_K2_K3

C1 + background1: K1

1.9294 105

2.0%

C1 + background2: K1

1.9294 105

2.0%

C1 + background1: K2

1.1139.105

3.0%

C1 + background2: K2

1.1139.105

3.0%

C2 + background1: K1

1.9294 105

2.0%

C2 + background2: K1

1.9294 105

2.0%

C2 + background1: K2

1.1139.105

3.0%

C2 + background2: K2

1.1139.105

3.0%

4.2.3. Results for \(\theta \mathrm{=}60°\)#

Identification

Reference

Tolerance

CALC_G

C1 + background1: K1

6.4312105

2.0%

C1 + background2: K1

6.4312105

2.0%

C1 + background1: K2

1.1139.105

3.0%

C1 + background2: K2

1.1139.105

3.0%

C1 + background1: G

7,1692 10-2

2.0%

C1 + background2: G

7,1692 10-2

2.0%

C2 + background1: K1

6.4312105

2.0%

C2 + background2: K1

6.4312105

2.0%

C2 + background1: K2

1.1139.105

3.0%

C2 + background2: K2

1.1139.105

3.0%

C2 + background1: G

7,1692 10-2

2.0%

C2 + background2: G

7,1692 10-2

2.0%

POST_K1_K2_K3

C1 + background1: K1

6.4312105

2.0%

C1 + background2: K1

6.4312105

2.0%

C1 + background1: K2

1.1139.105

3.0%

C1 + background2: K2

1.1139.105

3.0%

C2 + background1: K1

6.4312105

2.0%

C2 + background2: K1

6.4312105

2.0%

C2 + background1: K2

1.1139.105

3.0%

C2 + background2: K2

1.1139.105

3.0%