2. Modeling A#

In this modeling, the extended finite element method (\(\text{X-FEM}\)) is used. A radius of geometric enrichment is defined with a number of element layers equal to 3.

2.1. Characteristics of the mesh#

The structure is modelled by a regular mesh composed of \(100\times 100\) QUAD4, respectively along the \(x,y\) axes. The crack is not meshed.

_images/10000000000001860000033A3B2D7B4CE7FC8440.png

Figure 2.1-1 : mesh of the cracked plate

2.2. Tested sizes and results#

For each value of the angle \(\theta\), we test the value of the stress intensity factors \({K}_{I}\) and \({K}_{\mathrm{II}}\) given by CALC_G (for the two crack backgrounds) as well as those given by K1 and K2 from POST_K1_K2_K3 (for the two crack bottoms).

For method \(G-\mathrm{thêta}\) (command CALC_G), two choices of theta field crowns are tested:

  • \(\mathrm{C1}\): \({R}_{\mathrm{inf}}=\mathrm{0,1}a\) and \({R}_{\text{sup}}=\mathrm{0,3}a\);

  • \(\mathrm{C2}\): \({R}_{\mathrm{inf}}=h\) and \({R}_{\text{sup}}=\mathrm{3h}\);

where \(h\) is the characteristic mesh size:

\(h=\sqrt{{(\frac{\mathrm{LX}}{\mathrm{NX}})}^{2}+{(\frac{\mathrm{LY}}{\mathrm{NY}})}^{2}}\)

For the method by extrapolation of movement jumps (POST_K1_K2_K3), the maximum curvilinear abscissa is equal to \(\mathrm{0,3}a\).

2.2.1. Results for thêta= 0°#

Identification

Reference

Tolerance

CALC_G

C1 + background1: K1

2.5725 105

2.0%

C1 + background2: K1

2.5725 105

2.0%

C1 + background1: K2

0

257

C1 + background2: K2

0

257

C1 + background1: G

0.29

2.0%

C1 + background2: G

0.29

2.0%

C2 + background1: K1

2.5725 105

2.0%

C2 + background2: K1

2.5725 105

2.0%

C2 + background1: K2

0

257

C2 + background2: K2

0

257

C2 + background1: G

0.29

2.0%

C2 + background2: G

0.29

2.0%

POST_K1_K2_K3

background 1: K1

2.5725 105

2.00%

background 2: K1

2.5725 105

2.00%

background 1: K2

0

257

background 2: K2

0

257

The zero values of \({K}_{2}\) are tested in absolute terms with a tolerance equal to \({K}_{1}^{\mathit{ref}}\mathrm{/}1000\).

2.2.2. Results for thêta= 15°#

Identification

Reference

CALC_G

C1 + background1: K1

2.4001 105

C1 + background2: K1

2.4001 105

C1 + background1: K2

6.4313 104

C1 + background2: K2

6.4313 104

C2 + background1: K1

2.4001 105

C2 + background2: K1

2.4001 105

C2 + background1: K2

6.4313 104

C2 + background2: K2

6.4313 104

POST_K1_K2_K3

background1: K1

2.4001.105

background 2: K1

2 400 1 105

background 1: K2

6, 4313 104

background 2: K2

6, 4313 104

2.2.3. Results for thêta= 30°#

Identification

Reference

CALC_G

C1 + background1: K1

1.9294 105

C1 + background2: K1

1.9294 105

C1 + background1: K2

1,139 105

C1 + background2: K2

1,139 105

C2 + background1: K1

1.9294 105

C2 + background2: K1

1.9294 105

C2 + background1: K2

1,139 105

C2 + background2: K2

1,139 105

POST_K1_K2_K3

background1: K1

1.9294 105

background 2: K1

1,9294 105

background 1: K2

1,139 105

background 2: K2

1,139 105

2.2.4. Results for thêta= 45°#

Identification

Reference

CALC_G

C1 + background1: K1

1.2863 105

C1 + background2: K1

1.2863 105

C1 + background1: K2

1.2863 105

C1 + background2: K2

1.2863 105

C2 + background1: K1

1.2863 105

C2 + background2: K1

1.2863 105

C2 + background1: K2

1.2863 105

C2 + background2: K2

1.2863 105

POST_K1_K2_K3

background 1: K1

1, 2 863 105

background 2: K1

1, 2 863 105

background 1: K2

1, 2863 105

background 2: K2

1, 2863 105

2.2.5. Results for thêta= 60°#

Identification

Reference

CALC_G

C1 + background1: K1

6.4313 104

C1 + background2: K1

6.4313 104

C1 + background1: K2

1,140 105

C1 + background2: K2

1,140 105

C2 + background1: K1

6.4313 104

C2 + background2: K1

6.4313 104

C2 + background1: K2

1,140 105

C2 + background2: K2

1,140 105

POST_K1_K2_K3

background 1: K1

6, 43 13 104

background 2: K1

6, 43 13 104

background 1: K2

1,140 105

background 2: K2

1,140 105

2.3. Additional results#

Other \(\theta\) angle values have been tested elsewhere, without being part of this test. They are carried over to Figure 2.3-1.

_images/1000000000000CE4000009F6E3F578DD6FCBE50E.png

Figure 2.3-1 : stress intensity factors normalized by \({K}_{I}\) (theta= 0°) obtained by CALC_G for the crown \(\mathrm{C1}\)

As an illustration, Figure 2.3-2 shows a view of the deformation of the plate for an angle \(\theta =45°\).

_images/10000000000004680000040CD96680AB2EF0C302.png

Figure 2.3-2 : deformed for theta= 45°