1. Reference problem#
1.1. Geometry#
Consider a \(\mathrm{2D}\) square mesh:
Y
L32
P1
P2
L21
L43
P3
P4
X
L14
The sides \(\mathrm{L21}\), \(\mathrm{L32}\), \(\mathrm{L43}\), \(\mathrm{L14}\) each measure \(10\mathrm{mm}\).
1.2. Material properties#
We take: \(E=200\mathrm{GPa}\), and \(\nu =\mathrm{0,3}\).
The traction curve used is given in the following table:
\(\varepsilon\) |
0.0001 |
0.00338 |
0.00338 |
0.03 |
0.03 |
0.04 |
0.07 |
0.10 |
0.15 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.3 |
0.4 |
\(\sigma\) |
27.30 |
222.72 |
222.72 |
519.58 |
519.58 |
580.94 |
633.48 |
721.82 |
828.96 |
970.19 |
970.19 |
970.19 |
1084.75 |
1084.75 |
1269.57 |
1419.48 |
\(\varepsilon\) |
0.5 |
0.7 |
1.0 |
1.0 |
1.5 |
2.0 |
||||||
\(\sigma\) |
1547.86 |
1763.72 |
1763.72 |
2025.50 |
2025.50 |
The Rousselier model is used in three configurations with the following parameters:
Elasto-plastic model (** ROUSS_PR **** ) with germination |
Visco-plastic model (** VISCOROUSS ) and theta-method |
||
|
|
|
1.3. Boundary conditions and loads#
With reference to the figure in [§1.1] the boundary conditions are as follows:
on the edge \(L32\) move
imposed in direction \(\mathrm{OY}\) (monotonic traction),
\(\mathrm{L21}\) movements blocked following \(X\),
\(\mathrm{L14}\) movements blocked following \(Y\).
The temporal evolution of elongation
are shown in the following table:
+————————————————————————————————————————————————-+++ |Time :math:`[s]` ||| +————————————————————————————————————————————————-+++ |Displacement ||| + +++ | ||| + .. image:: images/Object_3.svg +++ | :width: 9 ||| + :height: 17 +++ | ||| + +++ | ||| + +++ | ||| + \([\mathrm{mm}]\) +++ | ||| +————————————————————————————————————————————————-+++
The evolution is linear between the two moments.
1.4. Initial conditions#
Zero stresses and deformations.