Reference problem ===================== .. _Ref482175678: Geometry --------- Consider a :math:`\mathrm{2D}` square mesh: Y L32 P1 P2 L21 L43 P3 P4 X L14 The sides :math:`\mathrm{L21}`, :math:`\mathrm{L32}`, :math:`\mathrm{L43}`, :math:`\mathrm{L14}` each measure :math:`10\mathrm{mm}`. Material properties ---------------------- We take: :math:`E=200\mathrm{GPa}`, and :math:`\nu =\mathrm{0,3}`. The traction curve used is given in the following table: .. csv-table:: ":math:`\varepsilon` ", "0.0001", "0.00338", "0.00338", "0.03", "0.03", "0.04", "0.07", "0.10", "0.15", "0.2", "0.2", "0.2", "0.2", "0.2", "0.3", "0.4" ":math:`\sigma` ", "27.30", "222.72", "222.72", "519.58", "519.58", "580.94", "633.48", "721.82", "828.96", "970.19", "970.19", "970.19", "1084.75", "1084.75", "1269.57", "1419.48" .. csv-table:: ":math:`\varepsilon` ", "0.5", "0.7", "1.0", "1.0", "1.5", "2.0", "", "", "", "", "", "" ":math:`\sigma` ", "1547.86", "1763.72", "1763.72", "2025.50", "2025.50", "", "", "", "", "", "", "" The Rousselier model is used in three configurations with the following parameters: .. csv-table:: "**Elasto-plastic base model (** **ROUSS_PR** ****) **", "**Elasto-plastic model (**** ROUSS_PR **** **) with germination**", "**Visco-plastic model (** **** **** **)**) **", "**Visco-plastic model (**** **VISCOROUSS** **) and theta-method**" "1. :math:`D=2.` 2. :math:`{\sigma }_{1}=600\mathrm{MPa}` 3. :math:`\lambda =1.` 4. :math:`\mathrm{f0}=1.e-4` (initial porosity) 5. :math:`\mathrm{fc}=1.` (critical porosity) 6. :math:`A=1.` ", "1. :math:`D=2.` 2. :math:`{\sigma }_{1}=600\mathrm{MPa}` 3. :math:`\lambda =1.` 4. :math:`\mathrm{f0}=1.e-4` 5. :math:`\mathrm{fc}=1.` 6. :math:`A=1.` 7. :math:`\mathrm{An}=0.6` ", "1. :math:`D=2.` 2. :math:`{\sigma }_{1}=600\mathrm{MPa}` 3. :math:`\lambda =1.` 4. :math:`\mathrm{f0}=1.e-4` 5. :math:`\mathrm{fc}=1.` 6. :math:`A=1.` 7. :math:`{\sigma }_{0}=27\mathrm{MPa}` 8. :math:`{\varepsilon }_{0}=1.e-2` 9. :math:`\theta =0.57` 10. :math:`m=2`" Boundary conditions and loads ------------------------------------- With reference to the figure in [:ref:`§1.1 <§1.1>`] the boundary conditions are as follows: 1. on the edge :math:`L32` move .. image:: images/Object_1.svg :width: 9 :height: 17 .. _RefImage_Object_1.svg: imposed in direction :math:`\mathrm{OY}` (monotonic traction), 2. :math:`\mathrm{L21}` movements blocked following :math:`X`, 3. :math:`\mathrm{L14}` movements blocked following :math:`Y`. The temporal evolution of elongation .. image:: images/Object_2.svg :width: 9 :height: 17 .. _RefImage_Object_2.svg: are shown in the following table: +-------------------------------------------------------------------------------------------------------------------------------------------------+++ |Time :math:`[s]` ||| +-------------------------------------------------------------------------------------------------------------------------------------------------+++ |Displacement ||| + +++ | ||| + .. image:: images/Object_3.svg +++ | :width: 9 ||| + :height: 17 +++ | ||| + +++ | ||| + +++ | ||| + :math:`[\mathrm{mm}]` +++ | ||| +-------------------------------------------------------------------------------------------------------------------------------------------------+++ The evolution is linear between the two moments. Initial conditions -------------------- Zero stresses and deformations.