2. Benchmark solution#
2.1. Calculation method#
The formulas used are from BPEL 83. They are also found in NFEN1992 -1-1 October 2005, AFCEN ETC -C2010, with a few small variations.
\({\mathrm{\sigma }}_{p}\left(x\right)={\mathrm{\sigma }}_{\mathit{pi}}\left(x\right)\left(1.0\phantom{\rule{2em}{0ex}}-\phantom{\rule{2em}{0ex}}\mathrm{\Delta }{\mathrm{\sigma }}_{p}\left(\mathrm{\mu },t\right)\right)\)
\(\mathrm{\Delta }{\mathrm{\sigma }}_{p}\left(\mathrm{\mu },t\right)={k}_{1}.{\mathrm{\rho }}_{1000}{\left(\frac{t}{1000}\right)}^{\frac{3}{4}\left(1-\mathrm{\mu }\right)}.{e}^{\frac{10\mathrm{\mu }-7.5}{{k}_{2}}}\) with \(\mathrm{\mu }=\frac{{\mathrm{\sigma }}_{\mathit{pi}}\left(x\right)}{{f}_{\mathit{prg}}}\), \(t\) is in hours.
To be able to apply these formulas, the deformation must remain constant. \({\mathrm{\sigma }}_{\mathit{pi}}\) is the initial stress that corresponds to the initial deformation.
Validation will therefore be done on the “a” and “b” models, with these formulas. The test case “c” will be a non-regression test case because we simulate retension of the cable, so the deformation will vary over time.
2.2. Reference quantities and results#
The quantity tested will be the stress in the cable, at various times.
2.3. Uncertainty about the solution#
No uncertainty, the reference solution is analytical.
2.4. Bibliographical references#
beep [1] BPEL.
NF-EN-1992 [2] NF EN 1992-1-1 October 2005.
afcen [3] AFCEN ETC -C 2010.