1. Reference problem#

1.1. Geometry#

We consider an arc \(\mathit{AB}\) with radius \(100\mathit{cm}\), center \(C\) and aperture \(45°\)

_images/10000000000004AD000003E951804794D7A8C1B5.png

Illustration 1.1.1: arc geometry

Coordinates of the points (in \(\mathit{cm}\)):

\(A\)

\(B\)

\(C\)

\(x\)

0

29.3

100

\(y\)

0

70.7

0

\(z\)

0

0

0

1.2. Characteristics of the section#

The arc has a square cross section of \(1\mathit{cm}\) by \(1\mathit{cm}\).

\(A\mathrm{=}1{\mathit{cm}}^{2}\)

\({I}_{y}\mathrm{=}{I}_{z}\mathrm{=}0.0833{\mathit{cm}}^{4}\)

\({A}_{y}\mathrm{=}{A}_{z}\mathrm{=}1.2\)

1.3. Material properties#

\(E\mathrm{=}1\mathit{MPa}\)

\(\nu \mathrm{=}0.0\)

1.4. Boundary conditions and loading#

Boundary conditions are imposed at point \(A\) (arc embedment): \(\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}\mathit{DZ}\mathrm{=}\mathit{DRX}\mathrm{=}\mathit{DRY}\mathrm{=}\mathit{DRZ}\mathrm{=}0\)

At the free end at point \(B\), a vertical loading (perpendicular to the plane of the arc) is imposed at the free end at point: \(\mathrm{600N}\) \(\mathit{FZ}\mathrm{=}\text{600}\mathrm{\times }t\)