1. Reference problem#

1.1. Geometry#

_images/Shape1.gif

Figure 1.1-a : Problem geometry.

It is a cylinder with radius \(1\mathrm{mm}\) and height \(1\mathrm{mm}\).

The square in bold corresponds to axisymmetric modeling.

1.2. Material properties#

The material properties are dependent on the type of modeling and functions of the temperature in \(°C\) and on the irradiation in \(\mathrm{dpa}\) (displacement by atom).

The material parameters used in this test case should not be used for studies. They do not correspond to real characteristics.

For all models

Young’s module: \(E=210000.0–30.0T\) in \(\mathrm{MPa}\)

Poisson’s ratio: \(\nu =0.30+5.0E-05T\).

Coefficient of thermal expansion: \(\alpha =\left(15.0+0.002T\right)1.0E-06\)

For modeling a

Plastic part

\(\kappa =1.0\)

Elastic limit at 0.2% in \(\mathrm{MPa}\): \({R}_{02}={R}_{02}^{0}\mathrm{.}{C}_{w}\text{\_}{R}_{e}\mathrm{.}{I}_{r}\text{\_}{R}_{e}\)

with

\({R}_{02}^{0}=270.0-0.65T+0.001{T}^{2}\)

\({C}_{w}\text{\_}{R}_{e}=3.0\)

\({I}_{r}\text{\_}{R}_{e}=\left(2.0–{e}^{\frac{-\mathit{IRRA}}{3}}\right)\)

Ultimate compulsion in \(\mathrm{MPa}\): \({R}_{m}={R}_{02}(T,\mathrm{IRRA})+({R}_{m}^{0}–{R}_{02}^{0})\mathrm{.}{C}_{w}\text{\_}{R}_{m}\mathrm{.}{I}_{r}\text{\_}{R}_{m}\)

with

\({R}_{m}^{0}=600.0-1.5T+0.010{T}^{2}\)

\({C}_{w}\text{\_}{R}_{m}=0.50\)

\({I}_{r}\text{\_}{R}_{m}=0.25-0.10\left(1.0-{e}^{\frac{-\mathit{IRRA}}{10.0}}\right)+{e}^{\frac{-\mathit{IRRA}}{3.0}}\)

Distributed elongation: \({ϵ}_{u}=\mathrm{ln}(1.0+{ϵ}_{u}^{0}.{C}_{w}\text{\_}{ϵ}_{u}.{I}_{r}\text{\_}{ϵ}_{u}\ast 1.0E-02)\)

with

\({ϵ}_{u}^{0}=50.0-0.15T+0.0007{T}^{2}\)

\({C}_{w}\text{\_}{ϵ}_{u}=0.25\)

\({I}_{r}\text{\_}{ϵ}_{u}={e}^{\frac{-\mathit{IRRA}}{2}}\)

Irradiation part

Swelling part

\({A}_{\mathrm{i0}}=0.0{\mathrm{MPa}}^{-1}\mathrm{.}{\mathrm{dpa}}^{-1}\) \({\eta }_{\mathit{is}}=1.0E+50\mathit{MPa.dpa}\)

\(R=0.0{\mathrm{dpa}}^{-1}\)

\(\alpha =0.0\) \({\phi }_{\mathrm{0 }}=0.0\mathrm{dpa}\)

For modeling b

Plastic part

\({R}_{02}=5.0E+09\mathit{Mpa}\) \({R}_{m}=5.0E+09\mathit{Mpa}\) \({\varepsilon }_{u}=0.0\)

Irradiation part

Swelling part

\({A}_{\mathit{i0}}=2.0E-06{\mathit{MPa}}^{-1}.{\mathit{dpa}}^{-1}\) \({\eta }_{\mathrm{is}}=1000.0\mathrm{MPa.dpa}\)

\(R=0.0{\mathrm{dpa}}^{-1}\)

\(\alpha =0.0\) \({\phi }_{0}=0.0\mathrm{dpa}\)

For c modeling

Plastic part

\({R}_{02}=5.0E+09\mathit{Mpa}\) \({R}_{m}=5.0E+09\mathit{Mpa}\) \({\varepsilon }_{u}=0.0\)

Irradiation part

Swelling part

\({A}_{\mathrm{i0}}=0.0{\mathrm{MPa}}^{-1}\mathrm{.}{\mathrm{dpa}}^{-1}\) \({\eta }_{\mathit{is}}=1.0E+06\mathit{MPa.dpa}\)

\(R=0.0025{\mathit{dpa}}^{-1}\)

\(\alpha =1.0\) \({\phi }_{0}=1.0\mathrm{dpa}\)

1.3. Boundary conditions and loads#

Modeling a

For edges \(\mathrm{AB}\) and \(\mathrm{DC}\), \(\mathrm{DY}=0\)

For edge \(\mathrm{AD}\), \(\mathrm{DX}=0\)

In addition, a linear temperature ramp with a maximum of \(400°C\) is applied.

Modeling b

For edge \(\mathrm{AB}\), \(\mathrm{DY}=0\)

For edge \(\mathrm{AD}\), \(\mathrm{DX}=0\)

For edge \(\mathrm{DC}\), apply a linear ramp of linear forces with a maximum value of \(\mathrm{FY}=\mathrm{200 }N/\mathrm{mm}\)

In addition, a linear irradiation ramp with a maximum of \(10\mathrm{dpa}\) and a temperature ramp with a maximum of \(400°C\) are applied.

C modeling

For the \(\mathrm{AB}\) \(\mathrm{DY}=0\) edge

For the \(\mathrm{AD}\) \(\mathrm{DX}=0\) edge