3. Modeling A#

The proposed shell modeling is Q4GG. Steel cables are modelled by BARRE elements.

The time step used for the calculations is \(\Delta t\mathrm{=}0.1\mathit{\mu s}\), it respects the stability condition (condition CFL).

3.1. Tested sizes and results#

We test the \(\mathit{DY}\) component of the movement at node \({N}_{\mathit{ref}}^{\mathit{cyl}}\) at three different times.

Node

Component

Instant (ms)

Reference Value (m)

Tolerance (%)

\({N}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{DY}\)

0

\(-0.00149171629532\)

\(1.E\mathrm{-}6\)

\({N}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{DY}\)

0.5

\(-0.000144254069992\)

\(1.0\)

\({N}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{DY}\)

1

\(0.00927115873819\)

\(0.3\)

We test the value of two components of the generalized forces \(\mathit{Nxx}\) and \(\mathit{Nyy}\), in the cell \({M}_{\mathit{ref}}^{\mathit{cyl}}\) at three different times.

Mesh

Component

Instant (ms)

Reference Value (N)

Tolerance (%)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nxx}\)

0

\(-298115.503936\)

\(1.0E\mathrm{-}6\)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nxx}\)

0.5

\(12143.207589\)

\(\mathrm{9,0}\)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nxx}\)

1

\(2183571.35963\)

\(0.25\)

Mesh

Component

Instant (ms)

Reference Value (N)

Tolerance (%)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nyy}\)

0

\(-1671586.18169\)

\(1.0E\mathrm{-}6\)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nyy}\)

0.5

\(-115744.270149\)

\(0.5\)

\({M}_{\mathit{ref}}^{\mathit{cyl}}\)

\(\mathit{Nyy}\)

1

\(10770364.4408\)

\(0.03\)

The value of the normal force is tested in element \({\mathit{EL}}_{\mathit{ref}}^{\mathit{câb}}\) at three different times.

Mesh

Component

Instant (ms)

Reference Value (N)

Tolerance (%)

\({\mathit{EL}}_{\mathit{ref}}^{\mathit{câb}}\)

\(N\)

0

\(3750000.0\)

\(2.0E\mathrm{-}3\)

\({\mathit{EL}}_{\mathit{ref}}^{\mathit{câb}}\)

\(N\)

0.5

\(3808797.87598\)

\(0.2\)

\({\mathit{EL}}_{\mathit{ref}}^{\mathit{câb}}\)

\(N\)

1

\(4229204.64926\)

\(0.5\)

The graph below shows the evolution of the displacement of the reference point obtained either with the DYNA_NON_LINE command or with CALC_EUROPLEXUS.

_images/Object_157.png