2. Benchmark solution#

2.1. Calculation method used for the reference solution#

\(\frac{T(x,t)\mathrm{-}{T}_{p}}{{T}_{0}\mathrm{-}{T}_{p}}\mathrm{=}\mathrm{\sum }_{n\mathrm{=}1}^{\mathrm{\infty }}{A}_{n}\mathrm{exp}(\mathrm{-}{\xi }_{n}^{2}\frac{\lambda }{\rho {C}_{p}{L}^{2}}t)\mathrm{cos}({\xi }_{n}\frac{x}{L})\)

\(x=\)

abscissa

\(t=\)

Time

\({T}_{0}=\)

Initial temperature

\({T}_{p}=\)

Imposed temperature

\(n=\)

\(\mathrm{1,2}\mathrm{,3},\mathrm{...}\)

With \({\xi }_{n}\) positive roots from \({\xi }_{n}\mathrm{tan}{\xi }_{n}\mathrm{=}\mathit{hL}\mathrm{/}\lambda \mathrm{=}10.\)

and \({A}_{n}=\frac{4\mathrm{sin}{\xi }_{n}}{2{\xi }_{n}+\mathrm{sin}(2{\xi }_{n})}\)

2.2. Benchmark results#

Temperatures at points \(\mathrm{M1}\) (\(x=0.02\)) and \(\mathrm{M2}\) (\(x=0.08\)),

and at different times (\(t=0.1,0.5,2.0\) and \(10.0\)).

The reference values are obtained by calculating the first 30 terms of the series (Mathematica).

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  • INCROPERA F.P., DE WITT D.P., Fundamentals of heat and mass transfer. Third edition. 1990.