1. Reference problem#
1.1. 3D geometry#
The structure is a straight parallelepiped with a square base, its dimensions (see Figure) are as follows:
\(\mathit{Lx}=\mathrm{1m}\), \(\mathit{Ly}=\mathrm{1m}\), and \(\mathit{Lz}=\mathrm{5m}\)
The interface is defined by level sets directly in the command file using the DEFI_FISS_XFEM [U4.82.08] operator. It is introduced in the middle of the structure by an equation level set \(\mathit{LSN}\) (see Figure):
\(\mathit{LSN}\): \(z\)

Figure 1.1-1: Bar geometry and interface positioning
1.2. 2D geometry#
The structure is a rectangle; its dimensions (see Figure) are as follows:
\(\mathit{Lx}=\mathrm{1m}\) and \(\mathit{Ly}=\mathrm{5m}\)
The interface is defined by level sets directly in the command file using the DEFI_FISS_XFEM [U4.82.08] operator. It is introduced in the middle of the structure by an equation level set \(\mathit{LSN}\) (see Figure):
\(\mathit{LSN}\): \(y\)

Figure 1.2-1: Bar geometry and interface positioning
1.3. Material properties#
\(\lambda \mathrm{=}1W\mathrm{.}{m}^{\mathrm{-}1}°{C}^{\mathrm{-}1}\)
\(\rho {C}_{p}=2J/{m}^{-3}°{C}^{-1}\)
1.4. Boundary conditions and loads#
A temperature \(\text{}\stackrel{̄}{T}{\text{}}^{\text{inf}}=10°C\) is imposed on the knots at the lower edge of the bar, and \(\text{}\stackrel{̄}{T}{\text{}}^{\text{sup}}=20°C\) on the knots at its upper edge.
1.5. Initial conditions#
None (the problem is stationary)