9. G modeling#

This modeling is exactly the same as the F modeling. The only difference is in the mesh: the QUAD4 of the F mesh are cut in TRIA3.

9.1. Characteristics of modeling#

We use the PLAN model of the THERMIQUE phenomenon.

9.2. Characteristics of the mesh#

The mesh includes 10 TRIA3 meshes.

_images/10000201000001DC000002AE1999B621D1785BF0.png

Figure 9.2-1: G mesh

9.3. Tested sizes and results#

We first test the values of the classical degrees of freedom TEMP and Heaviside H1 of the temperature field at the output of the THER_LINEAIRE operator, at the nodes located just below (2 knots) and above the interface (2 nodes).

Identification

Reference type

Reference value

Tolerance

All nodes just above the interface - \(\mathit{TEMP}\)

“ANALYTIQUE”

“”

20

0.1%

All nodes just below the interface - \(\mathit{TEMP}\)

“ANALYTIQUE”

“”

10

0.1%

All nodes located just below/above the interface - \(\mathit{H1}\)

“ANALYTIQUE”

5

0.1%

We then test the value of the degree of freedom TEMP of the temperature field at the outlet of POST_CHAM_XFEM, at the nodes located just below and above the interface.

Identification

Reference type

Reference value

Tolerance

All nodes just below the interface - \(\mathit{TEMP}\)

“ANALYTIQUE”

“”

10

0.1%

All nodes located just above the interface \(\mathit{TEMP}\) -

“ANALYTIQUE”

20

0.1%

Finally, we test the value of the TEMP component of the TEMP_ELGA field on the Gauss points located below and above the interface (cf. note page 6).

Identification

Reference type

Reference value

Tolerance

On the Gauss points below the interface - \(\mathit{TEMP}\)

“ANALYTIQUE”

“”

10

0.1%

On the Gauss points above the interface - \(\mathit{TEMP}\)

“ANALYTIQUE”

“”

20

0.1%