2. Reference solution#

2.1. Calculation method used for the reference solution#

The reference result is of the semi-analytical type. The 1D equation to be solved is as follows:

\(\{\begin{array}{}V\beta {(T)}_{,x}-K{T}_{,\mathrm{xx}}=0\\ \text{avec}{T}_{(x=0)}={T}_{0}\text{et}{T}_{(x=L)}={T}_{L}\end{array}\) eq 2.1-1

by integrating the equation [éq 2.1-1] we get:

\(\frac{V}{K}\beta (T)-\frac{\mathrm{dT}}{\mathrm{dx}}=A\) eq 2.1-2

where \(A\) is a constant depending on the boundary conditions, the \(\frac{V}{K}\) ratio, and the enthalpy function \(\beta (T)\).

This constant will be determined analytically.

Equation [éq 2.1-2] leads to:

\(x={\int }_{{T}_{0}}^{T(x)}\frac{\mathrm{dT}}{A+\frac{V}{K}\beta (T)}\) eq 2.1-3

who should check:

\(L={\int }_{{T}_{0}}^{{T}_{L}}\frac{\mathrm{dT}}{A+\frac{V}{K}\beta (T)}\) eq 2.1-4

Knowing \({T}_{\mathrm{0,}}{T}_{L},L,V,t\) and \(\beta (T)\), equation [éq 2.1-4] should give the value of the integration constant \(A\).

However, it is difficult (if not impossible) to determine this constant analytically, hence the use of numerical resolution of equation [éq 2.1-4] to determine \(A\).

With the data for problem \(({T}_{\mathrm{0,}}{T}_{L},{T}_{\mathrm{1,}}{T}_{\mathrm{2,}}{C}_{S}={C}_{l},{C}_{\mathrm{Sl}}\mathrm{.}\mathrm{.}\mathrm{.})\), we got the (physical) solution of \(A\) which takes the value \(A=-294.9117\).

Based on this constant, the analytical solution of the problem [éq 2.1-1] is analytical.

2.2. Benchmark results#

Abscissa

Temperature

0.6

387.98514

0.7

451.51001

0.725

469.72232

0.750

488.97505

0.775

509.32766

0.80

530.84296

0.825

553.58738

0.85

577.63114

0.9

683.71269

0.9125

719.51615

0.925

756.32221

0.9375

794.16795

0.95

833.07971

0.9625

873.08751

0.9750

914.22222

0.9875

956.51557