Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference result is of the semi-analytical type. The 1D equation to be solved is as follows: .. _RefEquation 2.1-1: :math:`\{\begin{array}{}V\beta {(T)}_{,x}-K{T}_{,\mathrm{xx}}=0\\ \text{avec}{T}_{(x=0)}={T}_{0}\text{et}{T}_{(x=L)}={T}_{L}\end{array}` eq 2.1-1 by integrating the equation [:ref:`éq 2.1-1 <éq 2.1-1>`] we get: .. _RefEquation 2.1-2: :math:`\frac{V}{K}\beta (T)-\frac{\mathrm{dT}}{\mathrm{dx}}=A` eq 2.1-2 where :math:`A` is a constant depending on the boundary conditions, the :math:`\frac{V}{K}` ratio, and the enthalpy function :math:`\beta (T)`. This constant will be determined analytically. Equation [:ref:`éq 2.1-2 <éq 2.1-2>`] leads to: .. _RefEquation 2.1-3: :math:`x={\int }_{{T}_{0}}^{T(x)}\frac{\mathrm{dT}}{A+\frac{V}{K}\beta (T)}` eq 2.1-3 who should check: .. _RefEquation 2.1-4: :math:`L={\int }_{{T}_{0}}^{{T}_{L}}\frac{\mathrm{dT}}{A+\frac{V}{K}\beta (T)}` eq 2.1-4 Knowing :math:`{T}_{\mathrm{0,}}{T}_{L},L,V,t` and :math:`\beta (T)`, equation [:ref:`éq 2.1-4 <éq 2.1-4>`] should give the value of the integration constant :math:`A`. However, it is difficult (if not impossible) to determine this constant analytically, hence the use of numerical resolution of equation [:ref:`éq 2.1-4 <éq 2.1-4>`] to determine :math:`A`. With the data for problem :math:`({T}_{\mathrm{0,}}{T}_{L},{T}_{\mathrm{1,}}{T}_{\mathrm{2,}}{C}_{S}={C}_{l},{C}_{\mathrm{Sl}}\mathrm{.}\mathrm{.}\mathrm{.})`, we got the (physical) solution of :math:`A` which takes the value :math:`A=-294.9117`. Based on this constant, the analytical solution of the problem [:ref:`éq 2.1-1 <éq 2.1-1>`] is analytical. Benchmark results ---------------------- .. csv-table:: "**Abscissa**", "**Temperature**" "0.6", "387.98514" "0.7", "451.51001" "0.725", "469.72232" "0.750", "488.97505" "0.775", "509.32766" "0.80", "530.84296" "0.825", "553.58738" "0.85", "577.63114" "0.9", "683.71269" "0.9125", "719.51615" "0.925", "756.32221" "0.9375", "794.16795" "0.95", "833.07971" "0.9625", "873.08751" "0.9750", "914.22222" "0.9875", "956.51557"