1. Reference problem#

1.1. Geometry#

_images/10001DC600001F36000016BD37DE83119F0D6FF3.svg

Coordinates of points (in meters):

\(A\)

\(B\)

\(C\)

\(D\)

\(E\)

\(X\)

\(x\)

0.5

0.5

0.5

\(y\)

0.5

\(z\)

1.5

1.2. Material properties#

Young’s modules in directions \(x\), \(y\), and \(z\):

\({E}_{L}=5.{10}^{11}\mathrm{Pa}\), \({E}_{T}=5.{10}^{11}\mathrm{Pa}\), \({E}_{N}=2.{10}^{11}\mathrm{Pa}\).

Coefficient of POISSON in the \(\mathrm{xy}\), \(\mathrm{xz}\), and \(\mathrm{yz}\) planes:

\({\nu }_{\text{LT}}=0.1\), \({\nu }_{\text{LN}}=0.3\), \({\nu }_{\text{TN}}=0.1\).

Shear modules in planes \(\mathit{xy}\), \(\mathit{xz}\), and \(\mathit{yz}\):

\({G}_{\text{LT}}=7.69231{10}^{10}\mathrm{Pa}\), \({G}_{\text{LN}}=7.69231{10}^{10}\mathrm{Pa}\),

\({G}_{\text{TN}}=7.69231{10}^{10}\mathrm{Pa}\).

Density: \(\rho =7800\mathrm{kg}/{m}^{3}\).

1.3. Boundary conditions and loads#

Point \(A\): (\(u=v=w=0\), \({\theta }_{x}={\theta }_{y}={\theta }_{z}=0\))

Own weight along axis \(z\): \(\rho gz\)

Uniform tensile stress for the upper side:

\({\sigma }_{z}=\rho gL=+229554.\mathrm{Pa}\)