1. Reference problem#

1.1. Geometry#

_images/10000D56000030930000174132DFB8A3C457790A.svg

1.2. Material properties#

\(E=0\)

\(\nu =0\)

The finite elements present in this problem are only used to define the degrees of freedom carried by the nodes. Their rigidity must be zero.

1.3. Boundary conditions and loads#

In this problem, we define « solid » node groups:

  • in 2D:

  • \(A,B,C,D\)

  • \(\mathrm{E1},\mathrm{E2},\mathrm{E3}\)

  • in 3D:

  • \(F,G,H,I,J,K,L,M\)

  • \(O,N,P\)

  • \(\mathrm{Q1},\mathrm{Q2},\mathrm{Q3}\)

For each of these groups of nodes, partial displacements are imposed so that the « solids » move while respecting:

In 2D:

\(\{\begin{array}{ccc}\mathrm{translation}& :& T(A)=T(\mathrm{E1})=(\begin{array}{}2.\\ 3.\end{array})\\ \mathrm{rotation}& :& \theta (A)=\theta (\mathrm{E1})=0.01\end{array}\)

In 3D:

\(\{\begin{array}{ccc}\mathrm{translation}& :& T(F)=T(N)=T(\mathrm{Q1})=(\begin{array}{}2.\\ 3.\\ 4.\end{array})\\ \mathrm{rotation}& :& \theta (F)=\theta (N)=\theta (\mathrm{Q1})=(\begin{array}{}0.001\\ 0.002\\ 0.003\end{array})\end{array}\)

The imposed trips chosen to lead to the « solid » trips sought are:

2D

\(\mathrm{DX}(A)=2.\)

\(\mathrm{DX}(\mathrm{E1})=2.\)

\(\mathrm{DY}(A)=3.\)

\(\mathrm{DY}(\mathrm{E1})=3.\)

\(\mathrm{DY}(B)=3.001\)

(+ \(\mathrm{DRZ}(\mathrm{E1})=0.001\) for B modeling)

3D

\(\mathrm{DX}(F,N,\mathrm{Q1})=2.\)

\(\mathrm{DY}(F,N,\mathrm{Q1})=3.\)

\(\mathrm{DZ}(F,N,\mathrm{Q1})=4.\)

\(\mathrm{DY}(J,O)=2.002\)

\(\mathrm{DY}(J,O)=2.999\)

\(\mathrm{DX}(I)=1.997\)

\(\mathrm{DRZ}(N)=0.003\)

for B modeling

\(\mathrm{DRX}(\mathrm{Q1})=0.001\)

\(\mathrm{DRY}(\mathrm{Q1})=0.002\)

\(\mathrm{DRZ}(\mathrm{Q1})=0.003\)