2. Benchmark solution#

2.1. Calculation method used for the reference solution#

\({u}_{r}(r,z,\theta )\mathrm{=}u(r,z)\mathrm{cos}\theta\)

with \(u(r,z)\mathrm{=}\frac{M}{\mathrm{2EI}}{z}^{2}+\frac{v\stackrel{ˉ}{p}}{\mathrm{2ER}}{r}^{2}\)

\({u}_{z}(r,z,\theta )\mathrm{=}v(r,z)\mathrm{cos}\theta\)

with \(v(r,z)\mathrm{=}\mathrm{-}\frac{\stackrel{ˉ}{p}}{\mathrm{2EI}}rz\)

\({u}_{\theta }(r,z,\theta )\mathrm{=}w(r,z)(\mathrm{-}\mathrm{sin}\theta )\)

with \(w(r,z)\mathrm{=}\frac{M}{\mathrm{2EI}}{z}^{2}\mathrm{-}\frac{v\stackrel{ˉ}{p}}{\mathrm{2ER}}{r}^{2}\)

All constraints are zero except \({\sigma }_{\mathit{zz}}(r,z)\mathrm{=}\mathrm{-}\frac{\stackrel{ˉ}{p}}{R}r\).

The data was chosen in such a way as \(u(x)\mathrm{=}u(\mathrm{0,}l)\mathrm{=}1\).

The trips are therefore written here:

\(u(r,z)\mathrm{=}\frac{{z}^{2}}{144}+\frac{{r}^{2}}{480}\); \(v(r,z)\mathrm{=}\mathrm{-}\frac{rz}{72}\); \(w(r,z)\mathrm{=}\frac{{z}^{2}}{144}\mathrm{-}\frac{{r}^{2}}{480}\)

and:

\({\sigma }_{\mathit{zz}}(r,z)\mathrm{=}\mathrm{-}r\)

2.2. Benchmark results#

\(u,v,w,{\sigma }_{\mathit{zz}}\)

in \(\begin{array}{c}r\mathrm{=}0.,0.5,1.\\ z\mathrm{=}0.,6.,12.\end{array}\)

\({u}_{r},{u}_{z},{u}_{\theta }\)

in \(\begin{array}{c}r\mathrm{=}0.\\ z\mathrm{=}6.\\ \theta \mathrm{=}45°\end{array}\)

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. PERMAS -HS. Axisymmetric Continua with arbitrary loads. Stuttgart 1985. INTES publication no. 224 pp 42 - 49.