4. Model A results#

4.1. Tested values#

Node

Size

Reference

\(B\)

\(u\)

2.0833 10—3

\(v\)

\(w\)

—2.0833 10—3

\({\sigma }_{\mathit{zz}}\)

—1.

\(E\)

\(u\)

0.25

\(v\)

\(w\)

0.25

\({\sigma }_{\mathit{zz}}\)

\(F\)

\(u\)

0.250521

\(v\)

—0.04166

\(w\)

0.0249479

\({\sigma }_{\mathit{zz}}\)

—0.5

\(G\)

\(u\)

0.252083

\(v\)

—0.083333

\(w\)

0.247917

\({\sigma }_{\mathit{zz}}\)

—1.

\(C\)

\(u\)

\(v\)

\(w\)

\({\sigma }_{\mathit{zz}}\)

\(D\)

\(u\)

1.00208

\(v\)

—0.16666

\(w\)

0.99791

\({\sigma }_{\mathit{zz}}\)

—1.

4.2. notes#

The analytical solution is found with \(<0.02\text{}\) precision for movements and \(<0.1\text{}\) for constraints.

With a numerical integration formula with 6 points of GAUSS (instead of 3) to calculate the stiffness, we would find the relationship to within \({10}^{\mathrm{-}10}\) (like PERMAS).