2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The analytical reference solution is based on the Love-Kirchhoff theory, commonly used for so-called « thin » plates [bia1].

Taking into account the problem and at any point on the plate, we have for the calculation of the arrow:

\(w\mathrm{=}\frac{{f}_{0}{a}^{4}}{4{\pi }^{4}D}\mathrm{sin}\pi \frac{x}{a}\mathrm{sin}\pi \frac{y}{a}\)

with:

\(D\mathrm{=}\frac{E{h}^{3}}{12(1\mathrm{-}{\nu }^{2})}\), \({f}_{0}\mathrm{=}1\), \(a\mathrm{=}1\), and \(\nu \mathrm{=}0.25\)

For the calculation of moments, the theory leads to the following expressions:

\(\begin{array}{ccc}{M}_{\mathit{xx}}& \mathrm{=}& \alpha (1+\nu )\mathrm{sin}\pi \frac{x}{a}\mathrm{sin}\pi \frac{y}{a}\\ {M}_{\mathit{yy}}& \mathrm{=}& {M}_{\mathit{xx}}\\ {M}_{\mathit{xy}}& \mathrm{=}& \mathrm{-}\alpha (1\mathrm{-}\nu )\mathrm{cos}\pi \frac{x}{a}\mathrm{cos}\pi \frac{y}{a}\end{array}\)

For the calculation of curvatures, the theory leads to the following expressions:

\({\kappa }_{\mathit{xx}}\mathrm{=}\mathrm{-}\frac{{f}_{0}{a}^{2}}{4{\pi }^{2}D}\mathrm{sin}(\pi \frac{x}{a})\mathrm{sin}(\pi \frac{y}{a})\)

\({\kappa }_{\mathit{yy}}\mathrm{=}\mathrm{-}\frac{{f}_{0}{a}^{2}}{4{\pi }^{2}D}\mathrm{sin}(\pi \frac{x}{a})\mathrm{sin}(\pi \frac{y}{a})\)

\({\kappa }_{\mathit{xy}}\mathrm{=}\frac{{f}_{0}{a}^{2}}{4{\pi }^{2}D}\mathrm{cos}(\pi \frac{x}{a})\mathrm{cos}(\pi \frac{y}{a})\)

with \(\alpha \mathrm{=}\frac{{f}_{0}{a}^{2}}{4{\pi }^{2}}\)

For shear forces, we get:

\(\begin{array}{c}{T}_{x}\mathrm{=}\frac{{f}_{0}a}{2\pi }\mathrm{cos}\pi \frac{x}{a}\mathrm{sin}\pi \frac{y}{a}\\ {T}_{y}\mathrm{=}\frac{{f}_{0}a}{2\pi }\mathrm{sin}\pi \frac{x}{a}\mathrm{cos}\pi \frac{y}{a}\end{array}\)

For a homogeneous plate, the plane stresses are given by:

\((\begin{array}{c}{\sigma }_{\mathit{xx}}\\ {\sigma }_{\mathit{yy}}\\ {\sigma }_{\mathit{xy}}\end{array})\mathrm{=}z\mathrm{[}A\mathrm{]}(\begin{array}{c}{M}_{\mathit{xx}}\\ {M}_{\mathit{yy}}\\ {M}_{\mathit{xy}}\end{array})\)

with \(\mathrm{[}A\mathrm{]}\mathrm{=}\frac{12}{{h}^{3}}\mathrm{[}I\mathrm{]}\) and \(z\) the position in the thickness of the plate

and the transverse shear stresses by:

\((\begin{array}{c}{\sigma }_{x}\\ {\sigma }_{y}\end{array})\mathrm{=}\mathrm{[}{D}_{1}(z)\mathrm{]}(\begin{array}{c}{T}_{x}\\ {T}_{y}\end{array})\),

with \(\mathrm{[}{D}_{1}(z)\mathrm{]}\mathrm{=}\frac{6}{{h}^{3}}({(\frac{h}{2})}^{2}\mathrm{-}{z}^{2})\)

For the flexural deformation energy, we obtain:

\({E}_{\mathit{flexion}}\mathrm{=}\frac{1}{2}{\mathrm{\int }}_{S}\mathrm{[}({M}_{\mathit{xx}}\mathrm{.}{\kappa }_{\mathit{xx}}+{M}_{\mathit{yy}}\mathrm{.}{\kappa }_{\mathit{yy}}+{M}_{\mathit{xy}}\mathrm{.}{\kappa }_{\mathit{xy}})\mathrm{]}\mathit{dS}\)

2.2. Benchmark results#

For each of the models, we calculate:

  • in the center of the plate, the displacement,

  • in the center of the plate and in the middle of the \(\mathit{AB}\) side, the constraints \({\sigma }_{\mathit{xx}}\), \({\sigma }_{\mathit{yy}}\),

    _images/Object_32.svg

,

_images/Object_33.svg

,

_images/Object_34.svg

on the plans:

  • lower, middle and upper part of the plate in the case of monolayer,

  • lower, middle and upper of each slice in the case of multi-layer (5 layers),

  • at the center, at the corners and in the middle of the sides \(\mathit{AB}\) and \(\mathit{AD}\), the membrane forces

    _images/Object_35.svg

,

_images/Object_36.svg

,

_images/Object_37.svg

, the shear forces \({T}_{x}\), \({T}_{y}\) and the moments \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\), and \({M}_{\mathit{xy}}\),

  • at the center (point O), at point A, the membrane deformations \({e}_{\mathit{xx}}\), \({e}_{\mathit{yy}}\), \({e}_{\mathit{xy}}\) and the curvatures \({\kappa }_{\mathit{xx}}\), \({\kappa }_{\mathit{yy}}\), \({\kappa }_{\mathit{xy}}\),

For the V modeling, the deformation energy \(\mathit{TOTALE}\), \(\mathit{MEMBRANE}\) and \(\mathit{FLEXION}\) is calculated at the center (point O).

Expressing these quantities at points \(O,A,B,C,D\) gives:

\(w\)

\({M}_{\mathit{xx}}\)

\({M}_{\mathit{yy}}\)

\({M}_{\mathit{xy}}\)

\({T}_{x}\)

\({T}_{y}\)

\({\kappa }_{\mathit{xx}}\)

\({\kappa }_{\mathit{yy}}\)

\({\kappa }_{\mathit{xy}}\)

\(O\)

\(\frac{3(1\mathrm{-}{\nu }^{2})}{{\pi }^{4}E{h}^{3}}\)

\(\alpha (1+\nu )\)

\(\alpha (1+\nu )\)

0

0

0

\(\frac{\mathrm{-}\alpha }{D}\)

\(\frac{\mathrm{-}\alpha }{D}\)

0

\(A\)

0

0

0

0

\(\mathrm{-}\alpha (1\mathrm{-}\nu )\)

0

0

0

\(\frac{\alpha }{D}\)

\(B\)

0

0

0

0

\(\alpha (1\mathrm{-}\nu )\)

0

\(\mathit{B1}\)

0

0

0

0

0

\(1\mathrm{/}2\pi\)

\(C\)

0

0

0

0

\(\mathrm{-}\alpha (1\mathrm{-}\nu )\)

0

\(D\)

0

0

0

0

\(\alpha (1\mathrm{-}\nu )\)

0

Digital application:

\(\frac{3(1\mathrm{-}{\nu }^{2})}{{\pi }^{4}E{h}^{3}}\mathrm{=}1.154923\)

\(\alpha (1+\nu )\mathrm{=}0.0316629\)

\(\alpha (1\mathrm{-}\nu )\mathrm{=}0.0189972\)

\(1\mathrm{/}2\pi \mathrm{=}0.159155\)

The distribution of plane and shear stresses at points \(O\) and \(\mathit{B1}\) inside the plate is as follows:

\(O\)

\({\sigma }_{\mathit{xx}}\)

\({\sigma }_{\mathit{yy}}\)

\({\sigma }_{\mathit{xy}}\)

\({\sigma }_{\mathit{xz}}\)

\({\sigma }_{\mathit{yz}}\)

\(h\mathrm{/}2\)

18.9972

18.9972

18.9972

0

0

\(\mathrm{3h}\mathrm{/}10\)

11.3983

11.3983

11.3983

0

0

\(h\mathrm{/}10\)

3.7994

3.7994

0

0

0

0

0

0

0

0

0

0

\(\mathrm{-}h\mathrm{/}10\)

—3.7994

—3.7994

0

0

0

0

\(\mathrm{-}\mathrm{3h}\mathrm{/}10\)

—11.3983

—11.3983

0

0

0

0

\(\mathrm{-}h\mathrm{/}2\)

—18.9972

—18.9972

0

0

0

0

_images/1000141E000069D50000615C2104F04402FACEA0.svg

\(\mathit{B1}\)

\({\sigma }_{\mathit{xx}}\)

\({\sigma }_{\mathit{yy}}\)

\({\sigma }_{\mathit{xy}}\)

\({\sigma }_{\mathit{xz}}\)

\({\sigma }_{\mathit{yz}}\)

\(h\mathrm{/}2\)

0

0

0

0

0

\(\mathrm{3h}\mathrm{/}10\)

0

0

0

0

1.5278

\(h\mathrm{/}10\)

0

0

0

0

2.3777

0

0

0

0

0

2.3873

\(\mathrm{-}h\mathrm{/}10\)

0

0

0

0

2.3777

\(\mathrm{-}\mathrm{3h}\mathrm{/}10\)

0

0

0

0

1.5278

\(\mathrm{-}h\mathrm{/}2\)

0

0

0

0

0

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. BATOZ and DHATT. Modeling of structures by finite elements. Beams and Plates. Volume 2 HERMES, 1990.