10. H modeling#

10.1. Characteristics of modeling#

COQUE_3D triangular shell element

The plate model associated with modeling \(E\) is rotated 20 degrees according to the alpha nautical angle and 30 degrees according to beta. The cell numbering is the same as in modeling \(E\).

_images/10000000000001AB000001C95D135D313E860762.png

Boundary conditions:

LIAISON_OBLIQUE

(GROUP_NO: AB, ANGL_NAUT =( 20.,30.,0.) , EX: 0. , DZ: 0. , DRY :0.)

(GROUP_NO: BC, ANGL_NAUT =( 20.,30.,0.) , BY: 0. , DZ: 0. , DRX :0.)

(GROUP_NO: CD, ANGL_NAUT =( 20.,30.,0.) , EX: 0. , DZ: 0. , DRY :0.)

(GROUP_NO: DA, ANGL_NAUT =( 20.,30.,0.) , BY: 0. , DZ: 0. , DRX :0.)

(GROUP_NO: O, ANGL_NAUT =( 20.,30.,0.) , EX: 0. , BY: 0. , DRX :0. , DRY :0. , DRZ :0.)

FORCE_ARETE

(GROUP_NO: AB MY:0.)

(GROUP_NO: BC MX:0.)

(GROUP_NO: CDMY:0.)

(GROUP_NO: BY MAX:0.)

10.2. Characteristics of the mesh#

Number of knots: 626

Number of meshes and type: 288 TRIA6

10.3. Tested sizes and results#

Identification

Point O \((\mathit{M134})\)

Constrains

\({\sigma }_{\mathit{xx}}\), \({\sigma }_{\mathit{yy}}\),, \({\sigma }_{\mathit{xy}}\),,, \({\sigma }_{\mathit{xz}}\), \({\sigma }_{\mathit{yz}}\) on lower, middle, and upper sheets

Displacement

\(\mathit{DZ}\)

Point B1 \((\mathit{M122})\)

Constraints

\({\sigma }_{\mathit{xx}}\), \({\sigma }_{\mathit{yy}}\), \({\sigma }_{\mathit{xy}}\), \({\sigma }_{\mathit{xz}}\), \({\sigma }_{\mathit{yz}}\) on lower, middle and upper sheets

Identification

Point O

\((\mathit{M134})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

\((\mathit{M158})\)

_images/Object_1739.svg
,
_images/Object_1740.svg

\((\mathit{M132})\)

_images/Object_1742.svg
,
_images/Object_1743.svg

\((\mathit{M156})\)

_images/Object_1745.svg
,
_images/Object_1746.svg

Point A

\((\mathit{M1})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

Point B

\((\mathit{M266})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

Identification

Point C

\((\mathit{M288})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

Point D

\((\mathit{M23})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

Identification

Point B1

\((\mathit{M122})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

\((\mathit{M146})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

Identification

Point D1

\((\mathit{M11})\)

_images/Object_535.svg
,
_images/Object_536.svg

\((\mathit{M14})\)

\({N}_{\mathit{xx}}\), \({N}_{\mathit{yy}}\), \({N}_{\mathit{xy}}\), \({M}_{\mathit{xx}}\), \({M}_{\mathit{yy}}\),, \({M}_{\mathit{xy}}\), \({T}_{x}\), \({T}_{y}\)

10.4. notes#

The reference value of the displacement at point \(O\) is obtained by projecting the displacement calculated for the modeling E into the rotated coordinate system (the displacement for the modeling E being vertical, the new displacement is a function of the projection of the axis \(Z\)).

In the local coordinate system, the projection of the \(Z\) axis is as follows:

_images/Object_1048.svg

, with

_images/Object_1049.svg

and

_images/Object_1050.svg

On the other hand, the expression for the sine pressure in the rotated coordinate system becomes:

_images/Object_463.svg