1. Reference problem#

1.1. Geometry#

_images/10000000000004370000018F8844DED8D226C3AB.png

coordinates of the points (in \(m\)): \(\mathrm{A1}(\mathrm{0,0}\mathrm{,0})\) \(\mathrm{A2}(\mathrm{10,0}\mathrm{,0})\) \(\mathrm{A3}(\mathrm{10,5}\mathrm{,0})\) \(\mathrm{A4}(\mathrm{0,5}\mathrm{,0})\)

1.2. Material properties#

The material consists of 4 orthotropic layers with a thickness of 0.1.

The first layer is characterized by:

\(\mathrm{EL}={20000.10}^{6}\mathrm{Pa}\)

\(\mathrm{ET}={20000.10}^{6}\mathrm{Pa}\)

\(\mathrm{VLT}=0.3\)

\(\mathrm{GLT}={2000.10}^{6}\mathrm{Pa}\)

the second layer by:

\(\mathrm{EL}={15000.10}^{6}\mathrm{Pa}\)

\(\mathrm{ET}={15000.10}^{6}\mathrm{Pa}\)

\(\mathrm{VLT}=0.3\)

GLT = 1500.10^6Pa

the third layer by:

\(\mathrm{EL}={20000.10}^{6}\mathrm{Pa}\)

\(\mathrm{ET}={20000.10}^{6}\mathrm{Pa}\)

\(\mathrm{VLT}=0.3\)

\(\mathrm{GLT}={2000.10}^{6}\mathrm{Pa}\)

and the fourth layer by:

\(\mathrm{EL}={15000.10}^{6}\mathrm{Pa}\)

\(\mathrm{ET}={15000.10}^{6}\mathrm{Pa}\)

\(\mathrm{VLT}=0.3\)

\(\mathrm{GLT}={1500.10}^{6}\mathrm{Pa}\)

1.3. Boundary conditions and loads#

Node \(\mathrm{A1}\) is embedded:

\(\mathrm{dx}=0.\)

\(\mathrm{dy}=0.\)

\(\mathrm{dz}=0.\)

\(\mathrm{dRx}=0.\)

\(\mathrm{dRy}=0.\)

\(\mathrm{dRz}=0.\)

Node \(\mathrm{A2}\) is blocked according to the following ddls:

\(\mathrm{dx}=0.\)

\(\mathrm{dy}=0.\)

A modal force \(\mathrm{Fz}=-\mathrm{1000.N}\) is applied to node \(\mathrm{A3}\).